PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and Numerical Studies of the Behavior and Energy Absorption of Foam-Filled Circular Tubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Following paper is focused on experimental and numerical studies of the behavior and energy absorption for both: quasi-static and dynamic axial crushing of thin-walled cylindrical tubes filled with foam. The experiments were conducted on single walled and double walled tubes. Unfilled profiles were compared with tubes filled with various density polyurethane foam. All experiments were done in order to possibility of the safety of the elements absorbing collision energy which can applied in car body. The dynamic nonlinear simulations were carried out by means of PAM-CRASH™ explicit code, which is dedicated calculation package to modelling of crush. Computational crushing force, plastic hinges locations and specimens post-crushed geometry found tobe convergent with the real experiments results. Conducted experiments allowed to draw conclusion, that crashworthiness ability is directly proportional to foam density. The investigation of the experimental data revealed, that double walled tubes have greater energy absorbing ability. A proposed investigation enable to analyze and chosen of optimal parameters of these elements, which can use in automotive industry as an absorption energy components.
Twórcy
  • Wroclaw University of Science and Technology, 6 Łukasiewicza Str., 50-371, Wrocław, Poland
  • Wroclaw University of Science and Technology, 6 Łukasiewicza Str., 50-371, Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, 6 Łukasiewicza Str., 50-371, Wrocław, Poland
Bibliografia
  • [1] A. A. A. Alghamdi, Collapsible Impact Energy Absorbers: An Overview, Thin-Walled Struct. 39 (2), 189-213 (2001).
  • [2] N. Jones, Structural Impact, Cambridge University Press, United Kingdom (2012).
  • [3] S. R. Reid, Plastic Deformation Mechanisms in Axially Compressed Metal Tubes Used as Impact Energy Absorbers, lntemational Journal of Mechanical Sciences 35 (12), 1035-1052 (1993).
  • [4] W. Abramowicz, T. Wierzbicki, Axial Crushing of Foam-Filled Columns, International Journal of Mechanical Sciences 30 (3-4), 263-271 (1998).
  • [5] S. Mingming, W. Han, H. Hai, Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes, Composite Structures 226, UNSP, 111197, (2019).
  • [6] Y. Ru-yang, Hao Zhen-yu, et al., Experimental and theoretical investigations on axial crushing of aluminum foam-filled grooved tube, Composite Structures 226, UNSP, 111229, (2019).
  • [7] A. G. Hanssen, M. Langseth, O. S. Hopperstad, Static and Dynamic Crushing of Circular Aluminum Extrusions with Aluminum Foam Filler, International Journal of Impact Engineering 24 (5), 475-507 (2000).
  • [8] D. Fauzan, A. Shahrum, Optimisation and validation of full and half foam filled double circular tube under multiple load cases, International Journal of Crashworthiness 24 (4), 389-398 (2019).
  • [9] N. Abba, E. Seyed Ahmad, Foam-Filled Columns with Rectangular Cross-Section During the Flattening Process: Theory and Experiment, Iranian Journal of Science and Technology-Transactions of Mechanical Engineering 43 (1), 783-795 (2019).
  • [10] I. Duarte, L. Krstulovic-Opara, et al., Axial crush performance of polymer-aluminium alloy hybrid foam filled tubes, Thin-Walled Structures 138, 124-136 (2019).
  • [11] M. Jahani, H. Beheshti, M. Heidari-Rarani, Effects of Geometry, Triggering and Foam-Filling on Crashworthiness Behaviour of a Cylindrical Composite Crash Box, International Journal of Automotive and Mechanical Engineering 16 (2), 6568-6587 (2019).
  • [12] Y. Wang, X. Zhai, Dynamic Crushing Behaviors of Aluminum Foam Filled Energy Absorption Connectors, International Journal of Steel Structures 19 (1), 241-254 (2019).
  • [13] D. Fauzan, Review: deformation and optimisation crashworthiness method for foam filled structures, Latin American Journal of Solids and Structures 16 (7), UNSP e213. (2019).
  • [14] M. R. Ashby, The Mechanical Properties of Cellular Solids, Metallurgical Transactions 14A (9), 1755-1769 (1983).
  • [15] M. Avalle, G. Belingardi, R. Montanini, Characterization of Polymeric Structural Foams under Compressive Impact Loading by Means of Energy-Absorption Diagram, International Journal of Impact Egineering 25 (5), 455-472 (2001).
  • [16] L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, New York, Second Ed. (1997).
  • [17] J. Hohe, C. Beckmann, W. Boehme, An experimental and numerical survey into the potential of hybrid foams, Mechanics of Materials 136, UNSP 103063, (2019).
  • [18] H. W. Song, Z. J. Fan, G. Yu, Q. C. Wang, A. Tobota, Partition Energy Absorption of Axially Crushed Aluminum Foam-Filled Hat Sections, International Journal Solids and Structures 42 (9-10), 2575-2600 (2005).
  • [19] P. H. Thornton, Energy Absorption by Foam Filled Structures (1980).
  • [20] S. R. Reid, T. Y. Reddy, M. D. Gray, Static and Dynamic Axial Crushing of Foam-Filled Sheet Metal Tubes, lntemational Journalof Mechanical Sciences 28 (5), 295-322 (1986).
  • [21] A. K. Toksoy, M. Güden, The Strengthening Effect of Polystyrene Foam Filling in Aluminum Thin-Walled Cylindrical Tubes, Thin-Walled Struct. 43 (2), 333-350 (2005).
  • [22] K. R. F. Andrews, G. L England, E. Ghani, Classification of the Axial Collapse of Cylindrical Tubes under Quasi-Static Loading, International Journal of Mechanical Sciences 25 (9-10): 687-696. (1983).
  • [23] P. Zając, M. Struś, S. Polak, Z. Gronostajski, A. Tobota, Z. Niechajowicz, J. Gronostajski, P. Wiewiórski, Measurement System of Crash-Test Experiments, Archives of Civil and Mechanical Engineering 4 (1), 5-23 (2004).
  • [24] A. Tobota, W. Olchowik, M. Domański, P. Wiewiórski, Measuring System for Investigations of Cash-Test Deformation of Samples, in Proceedings of the Technical Diagnostic of Systems and Devices National Scientific Conf. (2003).
  • [25] J. Karlinski, A. Iluk, Explicit Integration of Equations of Motion in Nonlinear Constructions Dynamics, in Proceedings of the Computer Aided Engineering International Scientific Conf. 2000.
  • [26] J. Karlinski, A. Iluk, Numerical Techniques of Resolving the Nonlinear Dynamics Problems, in Proceedings of the Computer Aided Engineering International Scientific Conf. 2000.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51d6eff4-fb26-48bd-a303-cbd44e79c99c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.