Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the rapidly evolving landscape of smart cities, the integration of advanced technologies is crucial for ensuring safety, optimizing traffic flow, and enhancing the urban living experience. Vehicle-to-vehicle (V2V) communication and visible light communication (VLC) have emerged as promising solutions to address these challenges. This paper explores the integration of V2V communication and VLC at smart pedestrian crosswalks to enhance pedestrian safety and traffic management in smart cities. It explores the impact of neighbouring vehicles on V2V-VLC performance and proposes novel methodologies to assess traffic density effects. Results indicate a significant chance of encountering nearby cars during rush hours, emphasizing the importance of these integrated systems for safety and mobility in urban environments. The outcomes show that the chance of running into extra cars in nearby lanes is independent of the particular lane and increases to 80% through rush hours, but falls to a lower amount than 20% through off-peak and initial morning hours.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e150610
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., fot.
Twórcy
autor
- Department of Medical Device Technology Engineering, Al Mustaqbal University, Babylon, Iraq
autor
- Department of Computer Techniques Engineering, Imam Al Kadhum College (IKC), 10087, Baghdad, Iraq
Bibliografia
- [1] Chen, Z., Basnayaka, D. A. & Haas, H. Space division multiple access for optical attocell network using angle diversity transmitters. J. Light. Technol. 35, 2118-2131 (2017). https://doi.org/10.1109/jlt.2017.2670367.
- [2] Alsalami, F. M. et al. Statistical channel modelling of dynamic vehicular visible light communication system. Veh. Commun. 29, 100339 (2021). https://doi.org/10.1016/j.vehcom.2021.100339.
- [3] López-Cardona, J. D. et al. Power-Over-fibre in a 10 km long multicore fibre link within a 5G fronthaul scenario. Opt. Lett. 46, 5348-5348 (2021). https://doi.org/10.1364/ol.439105.
- [4] Deng, X. et al. Two-dimensional power allocation for optical MIMO-OFDM systems over low-pass channels. IEEE Trans. Veh. Technol. 71, 7244-7257 (2022). https://doi.org/10.1109/tvt.2022.3162621.
- [5] Algriree, W. et al. Validation hybrid filter detection for multi-user multiple input multiple output F-OFDM by universal software radio peripheral. Alex. Eng. J. 74, 241-268 (2023). https://doi.org/10.1016/j.aej.2023.04.033.
- [6] Algriree, W. et al. An analysis of low complexity of 5G-MIMO communication system based CR using hybrid filter detection. Alex. Eng. J. 65, 627-648 (2023).
- [7] Algriree, W. et al. An analysis of 5G-MIMO communication system based SS for centralized cooperative and non-cooperative users. Egypt. Inform. J. 24, 161-172 (2023). https://doi.org/10.1016/j.eij.2023.02.003.
- [8] Hosney, M., Selmy, H. A. I., Srivastava, A. & Elsayed, K. M. F. Interference mitigation using angular diversity receiver with efficient channel estimation in MIMO VLC. IEEE Access 8, 54060-54073 (2020). https://doi.org/10.1109/access.2020.2981137.
- [9] Jiao, Zh., Zhang, B. Liu, M. & Li, Ch. Visible light communication based indoor positioning techniques. IEEE Netw. 31, 12-18 2017, https://doi.org/10.1109/mnet.2017.1600264.
- [10] Cheruvillil, P. A. & Kumar, D. S. Design and Analysis of Infrastructure to Vehicle Visible Light Communication Channel Modeling. in 27th International Conference on Advanced Computing and Communications (ADCOM 2022) 12-16 (IEEE, 2023). https://doi.org/10.1049/icp.2023.1449.
- [11] Mohammadi, M., Sadough, S. M. S. & Ghassemlooy, Z. Enhanced secrecy outage probability for multiple‐input single‐output‐VLC systems through optical beamforming and improved light emitting diodes deployment. IET Optoelectron. (Print) 17, 101-109 (2023). https://doi.org/10.1049/ote2.12091.
- [12] Rahman, M. T., Bakibillah, A. S. M., Parthiban, R. & Bakaul, M. Review of advanced techniques for multi‐gigabit visible light communication. IET Optoelectron. 14, 359-373 (2020). https://doi.org/10.1049/iet-opt.2019.0120.
- [13] Msongaleli, D. L. & Kucuk, K. Optimal resource utilisation algorithm for visible light communication‐based vehicular ad‐hoc networks. IET Intell. Transp. Syst. 14, 65-72 (2019). https://doi.org/10.1049/iet-its.2019.0224.
- [14] Mohanty, S. P., Choppali, U. & Kougianos, E. Everything you wanted to know about smart cities: The internet of things is the backbone. IEEE Consumer Electron. Mag. 5, 60-70 (2016). https://doi.org/10.1109/mce.2016.2556879.
- [15] Bastos, A. R. N. et al. Flexible photoluminescent waveguide ampli-fiers to improve visible light communication platforms. IET Optoelectron. 14, 356-358 (2020). https://doi.org/10.1049/iet-opt.2020.0026.
- [16] Amirabadi, M. A., Kahaei, M. H. & S. A. Nezamalhosseni, S. A.. Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system. IET Optoelectron. 16, 93-105 (2020). https://doi.org/10.1049/ote2.12060.
- [17] Vaiopoulos, N., Vavoulas, A. & Sandalidis, H. G. An assessment of a unmanned aerial vehicle‐based broadcast scenario assuming random terrestrial user locations. IET Optoelectron. 15, 121-130 (2021). https://doi.org/10.1049/ote2.12009.
- [18] Căilean, A.-M., Dimian, M. & Popa, V. Noise-adaptive visible light communications receiver for automotive applications: a step toward self-awareness. Sensors 20, 3764 (2020). https://doi.org/10.3390/s20133764.
- [19] Roy, R. & Saha, P. Headway distribution models of two-lane roads under mixed traffic conditions: A case study from India. Eur. Transp. Res. Rev. 10, 3-12 (2017). https://doi.org/10.1007/s12544-017-0276-2.
- [20] Gongjun, Y. and Olariu, S. A probabilistic analysis of link duration in vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 12, 1227-1236 (2011). https://doi.org/10.1109/tits.2011.2156406.
- [21] Abuella, H. et al. Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions. IEEE Access 9, 160402-160436 (2021). https://doi.org/10.1109/ACCESS.2021.3129154.
- [22] Epple, B. Simplified channel model for simulation of free-space optical communications. J. Opt. Commun. Netw. 2, 293 (2010). https://doi.org/10.1364/jocn.2.000293.
- [23] Chen, C. et al. user-centric MIMO techniques for indoor visible light communication systems. IEEE Syst. J. 14, 3202-3213 (2020). https://doi.org/10.1109/jsyst.2019.2961696.
- [24] Rahaim, M. & Little, T. D. C. Interference in IM/DD optical wireless communication networks. J. Opt. Commun. Netw. 9, D51-D51 (2017). https://doi.org/10.1364/jocn.9.000d51.
- [25] Marshoud, H. et al. On the performance of visible light communication systems with non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 16, 6350-6364 (2017). https://doi.org/10.1109/twc.2017.2722441.
- [26] Butala, P. M., Elgala, H. & Little, T. D. C. Performance of Optical Spatial Modulation and Spatial Multiplexing with Imaging Receiver. 2014 IEEE Wireless Communications and Networking Conference (WCNC) 394-399 (IEEE, 2014). https://doi.org/10.1109/wcnc.2014.6952040.
- [27] Cuiwei, H., Wang, T. & Armstrong, J. Performance Comparison between Spatial Multiplexing and Spatial Modulation in Indoor MIMO Visible Light Communication Systems. in 2016 IEEE International Conference on Communications (ICC) 1-6 (IEEE, 2016). https://doi.org/10.1109/icc.2016.7511379.
- [28] Marcu, A-E., Dobre, R-A. & Vlădescu, M. Visible Light communi-cations: current challenges and prospects.” advanced topics in optoelectronics, microelectronics and nanotechnologies. Proc. SPIE 11718, 117182F (2020). https://doi.org/10.1117/12.2572074.
- [29] Miramirkhani, F. & Uysal, M. Channel modeling and characteri-zation for visible light communications. IEEE Photon. J. 7, 1-16 (2017). https://doi.org/10.1109/jphot.2015.2504238.
- [30] Yamazato, T. et al. The uplink visible light communication beacon system for universal traffic management. IEEE Access 5, 22282-22290 (2017). https://doi.org/10.1109/access.2017.2759179.
- [31] Lee, I. E., Sim, F. W. L. & Kung, F. W. L. Performance enhance-ment of outdoor visible-light communication system using selective combining receiver. IET Optoelectron. 3, 30-39 (2009). https://doi.org/10.1049/iet-opt:20070014.
- [32] Islim, M. S. et al. The impact of solar irradiance on visible light communications. J. Light. Technol. 36, 2376-2386 (2018). https://doi.org/10.1109/jlt.2018.2813396.
- [33] Chung, Y. H. & Oh, S. Efficient Optical Filtering for Outdoor Visible Light Communications in the Presence of Sunlight or Artificial Light. in 2013 International Symposium on Intelligent Signal Processing and Communication Systems 749-752 (IEEE, 2013). https://doi.org/10.1109/ispacs.2013.6704649.
- [34] Cervinka, D., Ahmad, Z., Salih, O. & Rajbhandari, S. A Study of Yearly Sunlight Variance Effect on Vehicular Visible Light Communication for Emergency Service Vehicles. in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) 1-6 (IEEE, 2020). https://doi.org/10.1109/csndsp49049.2020.9249508.
- [35] Khoder, R., Naja, R. & Tohme, S. Impact of Interference on visible light communication performance in a vehicular platoon. in 2020 International Wireless Communications and Mobile Computing (IWCMC) 1935-1939 (IEEE, 2020). https://doi.org/10.1109/iwcmc48107.2020.9148127.
- [36] Algriree, W. et al. On the performance of various 5G signals sensing based on hybrid filter. international journal of wireless information networks. Int. J. Wirel. Inf. Netw. 30, 42-57 (2023). https://doi.org/10.1007/s10776-022-00589-0.
- [37] Luo, P. et al. Performance analysis of a car-to-car visible light communication system. Appl. Opt. 54, 1696-1706 (2015). https://doi.org/10.1364/ao.54.001696.
- [38] Algriree, W. et al. The impact of M-ary rates on various quadrature amplitude modulation detection.” Int. J. Power Electron. Drive Syst. 13, 483-483 (2023). https://doi.org/10.11591/ijece.v13i1.pp483-492.
- [39] Chen, J. & Wang, Z. Topology control in hybrid VLC/RF vehicular ad-hoc network. IEEE Trans. Wirel. Commun. 19, 1965-1976 (2020). https://doi.org/10.1109/twc.2019.2960229.
- [40] Algriree, W. et al. A CR-5G network based on multi-user for various waveforms detection. Egypt. Inform. J. 23, 517-527 (2022). https://doi.org/10.1016/j.eij.2022.05.004.
- [41] Alsalami, F. M., Ahmad, Z., Haas, O. & Rajbhandari, S. Regular-Shaped Geometry-Based Stochastic Model for Vehicle-To-Vehicle Visible Light Communication Channel. in 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) 297–301 (IEEE, 2019). https://doi.org/10.1109/jeeit.2019.8717408
- [42] Nishimoto, S. et al. Overlay Coding for Road-To-Vehicle Visible Light Communication Using LED Array and High-Speed Camera. in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) 1704-1709 (IEEE, 2011). https://doi.org/10.1109/itsc.2011.6082943.
- [43] Cailean, A-M., Dimian, M., Popa, V., Chassagne, L. & Cagneau, B. Novel DSP receiver architecture for multi-channel visible light communications in automotive applications. IEEE Sensors J. 16, 3597-3602 (2016). https://doi.org/10.1109/jsen.2016.2529654.
- [44] Kim, Y. H., Cahyadi, W. A. & Chung, Y. H. experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions. IEEE Photon. J. 7, 1-9 (2015). https://doi.org/10.1109/jphot.2015.2499542.
- [45] Lian, J. & Brandt-Pearce, M. Multiuser MIMO indoor visible light communication system using spatial multiplexing. J. Light. Technol. 35, 5024-5033 (2017). https://doi.org/10.1109/jlt.2017.2765462.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51d4b41f-f7bd-446e-bb74-f7b921ff8e3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.