Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Constant development of robotics forces scientists and engineers to work on robots that are more visually and rigidly compatible with the environment around us. To make this possible, new flexible structures are necessary that enable programmatic shape change. To meet this need, in this work we present the concept and modelling methodology of a new structure enabling shape change using electromagnetic forces produced in liquid metal conductor and its stiffening using a granular jamming mechanism. This work presents the structure concept, the description of modelling methodology and empirical validation including the magnetitic field, scanned by magnetic field camera, and displacement distribution.
Czasopismo
Rocznik
Tom
Strony
677--681
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
autor
- Faculty of Automation and Constructive Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
autor
- Faculty of Automation and Constructive Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
autor
- Faculty of Automation and Constructive Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
autor
- Faculty of Automation and Constructive Machinery Engineering, Warsaw University of Technology, ul. Narbutta 84, 02-524 Warsaw, Poland
autor
- University of Bristol, Queen’s Building-University Walk, Bristol BS8 1TR, United Kingdom
Bibliografia
- 1. Jan F, Noh Y, Macias M, Wurdemann H, Althoefer K. Bio-Inspired Oc-topus Robot Based on Novel Soft Fluidic Actuator. IEEE International Conference on Robotics and Automation (ICRA). 2018; 1583-1588.
- 2. Chen Y, Doshi N, Wood R. Inverted and Inclined Climbing Using Ca-pillary Adhesion in a Quadrupedal Insect-Scale Robot. IEEE Robotics and Automation Letters. 2020; 5(3): 4820-4827.
- 3. He Z, Lian B, Song Y. Rigid-Soft Coupled Robotic Gripper for Adapta-ble Grasping. Journal of Bionic Engineering. 2023; 20.
- 4. Zhang J, Chen G, Chen J. Magnetic Skin for Touchless Human–Com-puter Interaction to Prevent Healthcare‐Associated Infections. Ad-vanced Sensor Research published by Wiley-VCH GmbH. 2022;1: 2200008.
- 5. Wu S, Baker G, Yin J, Zhu Y. Fast Thermal Actuators for Soft Robotics. Mary Ann Liebert. 2021;9.
- 6. Cunha MP da, Debije MG, Schenning APHJ. Bioinspired light-driven soft robots based on liquid crystal polymers. Chemical Society Re-views. 2020;49(18); 6568–78.
- 7. Ruiqian W, Chuang Z, Yiwei Z, Wenjun T, Chen W, Lianqing L. Soft underwater swimming robots based on artificial muscle, Advanced Materials Technologies. October 2022; 8(4): 2200962.
- 8. Kalita B, Leonessa A, Dwivedy SK. A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application. Actuators. 2022; 11(10): 288.
- 9. Chung HJ, Parsons AM, Zheng L. Magnetically Controlled Soft Robot-ics Utilizing Elastomers and Gels in Actuation: A Review. Advanced Intelligent Systems. 2021; 3(3): 2000186.
- 10. Mutlu R, Alici G, Xiang X, Li W. Electro-mechanical modelling and identification of electroactive polymer actuators as smart robotic ma-nipulators. Mechatronics. 2014; 24 (3): 241-251.
- 11. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft ro-botic glove for combined assistance and at-home rehabilitation. Ro-bot. Auton. Syst. 2015;73: 135-143.
- 12. Keith F, Shengqiang C, Adrian K, Siegfried B, Zhigang S. Model of dissipative dielectric elastomers. J. Appl. Phys. 2012;111(3).
- 13. Bartkowski P, Suwała G, Zalewski R. Temperature and strain rate ef-fects of jammed granular systems: experiments and modelling. Gran-ular Matter. 2021;23.
- 14. Ni X, Luan H, Kim J-T et al. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nat Commun 2022;13(5576):1234567890.
- 15. Sie´fert E, Reyssat E, Bico J, Roman B. Bio-inspired pneumatic shape-morphing elastomers. Nat Mater 2019;18:24–28.
- 16. Franinović K, Franzke L. Shape Changing Surfaces and Structures: Design Tools and Methods for Electroactive Polymers. In: Proceed-ings of the 2019 CHI Conference on Human Factors in Computing Systems [Internet]. New York, NY. USA: Association for Computing Machinery. 2019; 1–12.
- 17. Han MW, Kim MS, Ahn SH. Shape memory textile composites with multi-mode actuations for soft morphing skins. Compos Part B Eng. 2020;198:108170.
- 18. Bartkowski P, Bukowiecki H, Gawiński F, Zalewski R. Adaptive crash energy absorber based on a granular jamming mechanism. Bull Pol Acad Sci Tech Sci . 2022; 70(1).
- 19. Hudson, Shaymus W. Mechanical characterization of jammable gran-ular systems, Massachusetts Institute of Technology. Cambridge. 2012; 36-37
- 20. Liao Z, Hossain M, Yao X, Navaratne R, Chagnon G. A comprehensive thermo-viscoelastic experimental investigation of Ecoflex polymer. Polymer Testing. 2020; 86(1).
- 21. Brigido JD, Burrow SG, Woods BKS, Bartkowski P, Zalewski R. Flex-ural Models for Vacuum-Packed Particles as a Variable-Stiffness Mechanism in Smart Structures. Physical Review Applied. Bristol-Warsaw Collaboration. 2022; 17(4):044018.
- 22. Zhenhua W, Qi W, Jianyu H, Yamei Y, Dezhi C, Yusheng S, Bin S. The soft ndfeb/ecoflex composites for soft robot with a considerable magnetostimulated shrinkability, Composites Science and Technol-ogy. 2021; 109129.
- 23. Piotr B, Franciszek G, Lukasz P. E-morph as a new adaptive actuator for soft robotics, IEEE Robotics and Automation Letters. 2022; (7,4); 8831–8836.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51d325b9-c918-43bc-a912-9d614eed152c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.