Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Using the case of five different kinds of land use from different territories of Lithuania, this study assesses the level of contamination and human health risk assessment of arsenic (As), and heavy metals (HMs) such as cadmium (Cd), copper (Cu), zinc (Zn) and chromium (Cr) in the surface soil of the study areas. Geo-accumulation index (Igeo) analysis indicated that heavy Cd contamination occurred in agricultural territory (AT), while for As, no contamination to mild contamination occurred in all territories. For living territory (LT), green territory (GT) and technical territory (TT), Igeo readings for Cu showed no pollution to moderate pollution, while there was no pollution for natural territory (NT) and AT. For AT, there is no contamination from Zn or Cr. By contrast, Igeo values for Zn and Cu represent minimal to no pollution in the remaining territories. As in LT and Cd in AT, two of the HMs discovered, were deemed to be of medium risk, whereas other components fell into the permitted range. Among three different routes to exposure, it was discovered that the ingestion pathway was the main health risk. The Hazard quotient (HQ) and hazard index (HI) values for As, Cd, Cu, Zn, and Cr were lower than the suggested limit (HI = 1), indicating minimal non-carcinogenic risk to inhabitants in the study regions. The carcinogenic risk values for As (1.12E-04 children), Cd (2.20E-04 children), and Cr (2.35E-04 children) in AT pose a risk to children's health when ingested. The GT's carcinogenic readings for Cr (1.02 E+00 adult), put adults at risk of developing cancer, whereas As (1.89E-04) and Cr (2.28E-04) in LT put children at risk of cancer and for TT, both adults and children were at risk due to Cr's higher carcinogenic values (1.93E-04 for adults and 5.21E-04 for children).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 29
Opis fizyczny
Bibliogr. 38 po., map., tab., wykr
Twórcy
autor
- Vilnius University, Institute of Biosciences, Life Sciences Center, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania
- Nature Research Centre, Laboratory of Climate and Water Research, Akademijos 2, 08412, Vilnius, Lithuania
autor
- Vilnius University, Institute of Biosciences, Life Sciences Center, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania
autor
- Polish Geological Institute - National Research Institute, Rakowiecka 4, Warszawa, Poland
autor
- Nature Research Centre, Laboratory of Climate and Water Research, Akademijos 2, 08412, Vilnius, Lithuania
autor
- Vilnius University, Institute of Biosciences, Life Sciences Center, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania
Bibliografia
- 1. Adimalla, N., 2018. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: a case study from semi-arid region of South India. Exposure and Health, 11: 109-123. https://doi.org/10.1007/s12403-018-0288-8
- 2. Adimalla, N., 2019a. Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semiarid region of South India. Human and Ecological Risk Assessment: an International Journal, 26: 310-334. https://doi.org/10.1080/10807039.2018.1508329
- 3. Adimalla, N., 2019b. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42: 59-75. https://doi.org/10.1007/s10653-019-00270-1
- 4. Adomaitis, T., Mažvila, J., Eitminavičius, L., 2003. A comparative study of heavy metals in the soils of cities and arable lands. Ekologija Nr. 3: 12-16.
- 5. Christoforidis, A., Stamatis, N., 2009. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece. Geoderma, 151: 257-263. https://doi.org/10.1016/j.geoderma.2009.04.016
- 6. Chen, Z., Huang, T., Huang, X., Han, X., Yang, H., Cai, Z., Yao, L., Han, X., Zhang, M., Huang, C., 2019. Characteristics, sources and environmental implications of atmospheric wet nitrogen and sulfur deposition in Yangtze River Delta. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2019.116904
- 7. Duong, T.T.T., Lee, B.K., 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92: 554-562. https://doi.org/10.1016/j.jenvman.2010.09.010
- 8. Ferreira, A., Johnson, C.C., Appleton, J.D., Flight, D.M.A., Lister, T. R., Knights, K.V., Ander, L., Scheib, C., Scheib, A., Cave, M., Wragg, J., Fordyce, F., Lawley, F.R., 2017. London Region Atlas of Topsoil Geochemistry. British Geological Survey. http://earthwise.bgs.ac.uk/index.php/Category:London_Region_Atlas_of_Topsoil_Geochemistry
- 9. Gregorauskienė, V., 2006. Geocheminės taršos Lietuvos miestuose kartografavimas (in Lithuanian). Journal of Environmental Engineering and Landscape Management, 14: 52a-57a.
- 10. Gu, S., Li, Z., Yang, L., Bao, X., Ying, C., Zhang, Q., 2023. The distribution and human health risk assessment of eight neonico- tinoid resi dues in agricul tural soils from four provinces, south China. Chemosphere, 322: 138143. https://doi.org/10.1016/j.chemosphere.2023.138143
- 11. HN 60, 2004. Lithuanian hygiene norm. Maximum allowed concentrations of hazardous chemicals in soil. Approved by the Minister of Health of the Republic of Lithuania in 2004. March 8 by order no. V-114.
- 12. Jankauskaitė, M., Taraškevičius, R., Zinkutė, R., Veteikis, D., 2007. Relationship between landscape self-regulation potential and topsoil additive contamination by trace elements in Vilnius city. Journal of Environmental Engineering and Landscape Management, 16: 5-14. https://doi.org/10.3846/1648-6897.2008.16.5-14
- 13. Khan, A.B., Kathi, S., 2014. Evaluation of heavy metal and total petroleum hydrocarbon contamination of roadside surface soil. International Journal of Environmental Science and Technology, 11: 2259-2270. https://doi.org/10.1007/s13762-014-0626-8
- 14. Kowalska, J., Mazurek, R., Gasiorek, M., Setlak, M., Zaleski, T., Waroszewski, J., 2016. Soil pollution indices conditioned by medielav metallurgical activity - a case study from Krakow (Poland). Environmental Pollution, 218: 1023-1036. https://doi.org/10.1016/j.envpol.2016.08.053
- 15. Li, X., Liu, L., Wang, Y., Luo, G., Chen, X., Yang, X., Hall, M., Guo, R., Wang, H., Ciu, J., He, X., 2013. Heavy metal contamination of urban soil in an old indus trial city (Shenyang) in Northeast China. Geoderma, 192: 50-58. https://doi.org/10.1016/j.geoderma.2012.08.011
- 16. Lu, Y., Yin, W., Zhu, F., Zhang, G., 2010. The spatial distribution and sources of metals in urban soils of Guangzhou, China. 19th World Congress of Soil Science, 1-6 August, Brisbane, Australia.
- 17. Manta, S.D., Angeloneb, M., Bellancaa, A., Neria, R., Sprovieria, M., 2002. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300: 229-243. https://doi.org/10.1016/S0048-9697(02)00273-5
- 18. Mikalajūne, A., Jasulaitytė, G., 2011. Clean i ng of soil contaminated with heavy metals using red clovers. Environmental Engineering, the 8th International Conference, 19-20 May, Vilnius, Lithuania.
- 19. Muller, G., 1969. Index of geo-accumulation in sediments of the Rhine River. GeoJournal, 2: 108-118.
- 20. Nriagu, J., Pacyna, J., 1988. Quantitative assessement of worldwide contamination of air, water and soils by trace metals. Nature, 333: 134-139. https://doi.org/10.1038/333134a0
- 21. Ololade, I.A., 2014. An assessment of heavy metal contamination in soils within automechanical workshops using enrichment and contamination factors with geo-accumulation index. Journal of Environmental. Protection, 5: 970-982. https://doi.org/10.4236/jep.2014.511098
- 22. Olukanni, D.O., Adeoye, D.O., 2012. Heavy metal concentrations in road side soils from selected location in the Lagos Metropolis, Nigeria. International Journal of Engineering and Technology, 2: 1743-1752.
- 23. Pasieczna, A., 2003. Atlas of Urban Soils Contamination in Poland. Polish Geological Institute, Warszawa.
- 24. Qing, X., Yutong, Z., Shenggao, L., 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120: 377-385. https://doi.org/10.1016/j.ecoenv.2015.06.019
- 25. Quinonez-Plaza, A., Wakida, F.T., Temores-Peňa, J., Rodriguez- Mendivil, D.D., Garcia-Flores, E., Pastrana-Corral, M.A., Melendez-Lopez, S.G., 2017. Total petroleum hydrocarbons and heavy metals in road-deposited sediments in Tijuana, Mexico. Journal of Soils and Sediments, 17: 2873-2886. https://doi.org/10.1007/s11368-017-1778-1
- 26. Sezgin, N., Ozcan, H.K., Demir, G., Nemlioglu, S., Bayat, C., 2004. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International, 29: 979-985.
- 27. Skorbiłowicz, M., Skorbiłowicz, E., Rogowska, W., 2021. Heavy metal concentrations in roadside soils on the Biatystok- Budzisko route in Northeastern Poland. Minerals, 11: 1290. https://doi.org/10.3390/min11111290
- 28. Sonomdagva, C., Chultem, B., Byambatseren, C., Enkhchimeg, B., Batsuren, D., Batdelger, B., 2019. Contamination and health risk assessment of heavy metals in the soil of major cities in Mongolia. International Journal of Environmental Research and Public Health, 16: 2552. https://doi.org/10.3390/ijerph16142552
- 29. Taraškevičius, R., Zinkutė, R., 2003. Possibilities of predicting changes in pedogeochemical anomalies formed by diffuse pollution in urbanized areas. Annals of Geography, 36: 163-168.
- 30. Taraškevičius, R., Zinkutė, R., 2011. Geochemical anomalies of Lithuanian cities and their distribution, Baltica, 24: 163-168. Tomassi-Morawiec, H., Bojakowska, I., Dusza-Dobek, A., Pasieczna, A., 2016. Geochemical Atlas of Warsaw and Environs. Geological Institute of Polish - National Research Institute, Warszawa.
- 31. Tóth, Z., Dombos, M., Hornung, E., 2023. Urban soil quality deteriorates even with low heavy metal levels: an arthropod-based multi-indices approach. Ecological Applications: p.e2848. https://doi.org/10.1002/eap.2848
- 32. USEPA, 1989. Office of Emergency and Remedial Response. Risk Assessment Guidance for Superfund: pt. A. Human health evaluation manual, 1. Office of Emergency and Remedial Response, US Environmental Protection Agency.
- 33. USEPA, 2002. Supplemental guidance for developing soil screening levels for superfund sites. Washington: US Environmental Protection Agency. Office of Emergency and Remedial Response.
- 34. Valskys, V., Hassan, H.R., Wołkowicz, S., Satkūnas, J., Kibirkštis, G., Ignatavičius, G., 2022. A review on detection techniques, health hazards and human health risk assessment of arsenic pollution in soil and groundwater. Minerals, 12: 1326. https://doi.org/10.3390/min12101326
- 35. Yaqin, J.I., Yinchang, F.E.N.G., Jianhui, W.U., Tan, Z.H.U., Zhi- peng, B.A.I., Chiqing, D.U.A.N., 2008. Using geo-accumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20: 571-578. https://doi.org/10.1016/S1001-0742(08)62096-3
- 36. Zhaoyong, Z., Mamat, A., Simayi, Z., 2019. Pollution assessment and health risks evaluation of (metalloid) heavy metals in urban street dust of 58 cities in China. Environmental Science and Pollution Research, 26: 126-140. https://doi.org/10.1007/s11356-018-3555-0
- 37. Zhou, J., Feng K., Pei, Z., Meng, F., Sun, J., 2016. Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China. Ecotoxicology, 25: 380-388. https://doi.org/10.1007/s10646-015-1596-4
- 38. Zvilnaitė, J., Tričys, V., 2009. Dirvožemio užterštumo sunkiaisiais metalais tyrimas (in Lithuanian). Jaunųjų mokslinink0 darbai: 3: 160-163.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51d241ac-53d6-40a4-904c-e8431593f575