Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
In vitro examinations of toxic influence of PLGA co-polymer mixed with hydroxyapatite upon human osteoblasts line hFOB 1.19
Języki publikacji
Abstrakty
W celu biologicznej oceny w warunkach in vitro kopolimeru glikolidu z laktydem z dodatkiem hydroksyapatytu (PLGA+HA) dokonano oceny stopnia jego cytotoksyczności względem ludzkich osteoblastów linii hFOB 1.19. Wykonano pomiar aktywności dehydrogenazy mitochondrialnej (test MTT) oraz dehydrogenazy mleczanowej (test LDH) po 24 i 48 godzinach kontaktu komórek z ekstraktem uzyskanym poprzez 8-dniową inkubację kompozytu w medium do hodowli osteoblastów. Kontaktowano ponadto badany materiał bezpośrednio z komórkami kościotwórczymi, a stopień cytotoksyczności oceniano po 24, 48 i 72 godzinach stosując w tym celu test LDH. W obu metodach badany materiał nie wpływał w sposób toksyczny na ludzkie osteoblasty.
In order to evaluate lactide-glycolide co-polymer with admixture of hydroxyapatite (PLGA+HA) from biological point of view in vitro conditions, its level of toxicity for human osteoblasts line hFOB 1.19 was assessed. The activity of mitochondrial dehydrogenase and lactate dehydrogenase was measured (MTT test and LDH test respectively) after 24 and 48 hours of the cells’ contact with the extract obtained through 8-day incubation of the composite in osteoblasts cultivation medium. Apart from that the material examined was contacted with bone-forming cells and its degree of toxicity was assessed after 24, 48 and 72 hours using LDH test. In both methods the material under examination did not have any toxic influence upon human osteoblasts.
Czasopismo
Rocznik
Strony
97--102
Opis fizyczny
Bibliogr. 27 poz., tab.
Twórcy
autor
- Śląski Uniwersytet Medyczny w Katowicach, Katedra i Zakład Materiałoznawstwa Stomatologicznego w Bytomiu
autor
- Śląski Uniwersytet Medyczny w Katowicach Katedra i Zakład Mikrobiologii i Immunologii W Zabrzu
autor
- AGH, Wydział Inżynierii Materiałowej i Ceramiki, Katedra Biomateriałów, Kraków
autor
- Śląski Uniwersytet Medyczny w Katowicach, Katedra i Zakład Materiałoznawstwa Stomatologicznego W Bytomiu
autor
- Śląski Uniwersytet Medyczny w Katowicach Zakład Statystyki w Sosnowcu
autor
- Śląski Uniwersytet Medyczny w Katowicach Katedra i Zakład Mikrobiologii i Immunologii w Zabrzu
Bibliografia
- [1] Cytotoxicity detection kit (LDH). Instruction manual. 5th Version. Roche Applied Science: Germany, 2004.
- [2] Cell proliferation kit (MTT). Instruction manual. 3th Version. Roche Applied Science, Germany, 2003.
- [3] PN-EN ISO 10993-5: Biological evaluation of medical devices. In vitro cytotoxicity studies, March 2001.
- [4] Jahno V.D., Ribeiro G.B., Dos Santos L.A., Ligabue R., Einloft S., Ferreira M.R., Bombonato-Prado K.F. Chemical synthesis and in vitro biocompatibility tests of poly (L-lactic acid). J. Biomed. Mater. Res. A 2007, 83, 209-215.
- [5] Athanasiou K.A., Niederauer G.G., Agrawal C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93-102.
- [6] Wagner M., Kiapur N., Wiedmann-Al-Ahmad M., Hübner U., Al-Ahmad A., Shön R., Schmelzeisen R., Mülhaupt R., Gellrich N.C. Comparative in vitro study of the cell proliferation of ovine and human osteoblast-like cells on conventionally and rapid prototyping produced scaffolds tailored for application as potential bone replacement material. J. Biomed. Mater. Res. A 2007, 83, 1154-1164.
- [7] Bilir A., Aybar B., Tanrikulu S.H., Issever H., Tuna S. Biocompatibility of different barrier membranes in cultures of human CRL 11372 osteoblast-like cells: an immunohistochemical study. Clin. Oral Implants Res. 2007, 18, 46-52.
- [8] Di Toro R., Betti V., Spampinato S. Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers. Eur. J. Pharm. Sci. 2004, 21, 161-169.
- [9] Pamula E., Bacakova L., Filova E., Buczynska J., Dobrzynski P., Noskova L., Grausova L. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci.Mater.Med. 2008, 19, 425-435.
- [10] Graziano A., d’Aquino R., Cusella-De Angelis M.G., De Francesco F., Giordano A., Laino G., Piattelli A., Traini T., De Rosa A., Papaccio G. Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering. J. Cell. Physiol. 2008, 214, 166-172.
- [11] Wei G., Ma P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749-4757.
- [12] Lu H.H., Tang A., Oh S.C., Spalazzi J.P., Dionisio K. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 2005, 26, 6323-6334.
- [13] Vagaska B., Bacakova L., Pamuła E., Lisa V., Dobrzyński, P. Adhesion and growth of human osteoblast-like cells on aliphatic polyesters with different chemical compositions, surface roughness and modification with hydroxyapatite. Eng. Biomater. 2006, 58-56, 4-7.
- [14] Sosnowski S., Woźniak P., Lewandowska-Szumieł M. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Macromol. Biosci. 2006, 6, 425-434.
- [15] Balch O.K., Collier M.A., DeBeault L.E., Johnson L.L. Bioabsorbable suture anchor (co-polymer 85/15 D,L lactide/glycolide) implanted in bone: correlation of physical/mechanical properties, magnetic resonance imaging, and histological response. Arthroscopy 1999, 15, 691-708.
- [16] Böstman O., Pihlajamäki H. Clinical biocompatibility of biodegradable orthopeadic implants for internal fixation: a review. Biomaterials 2000, 21, 2615-2621.
- [17] Kumar M.N.V.R., Bakowsky U., Lehr C.M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004, 25, 1771-1777.
- [18] Shi X., Wang Y., Ren L., Gong Y., Wang D.A. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm. Res. 2009, 26, 422-30.
- [19] Chłopek J., Morawska-Chochół A., Bajor G., Adwent M., Cieślik-Bielecka A., Cieślik M., Sabat D. The influence of carbon fibres on the resorption time and mechanical properties of the lactide-glycolide co-polymer. J. Biomater. Sci. Polymer Edn 2007, 18, 1355-1368.
- [20] Cieślik M., Mertas A., Morawska-Chochół A., Sabat D., Orlicki R., Owczarek O., Król W., Cieślik T. Int. J. Mol. Sci. 2009, 10, 3224-3234.
- [21] Kokubo T., Kim H.M., Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24, 2161-2175.
- [22] Boccaccini A.R., Blaker J.J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devic. 2005, 2, 303-317.
- [23] Willi P., Chandra P.S. Nanoceramic matrices: biomedical applications. Am. J. Biochem. Biotechnol. 2006, 2, 41-48.
- [24] Shi X., Wang Y., Ren L., Gong Y., Wang D.A. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm. Res. 2009, 26, 422-30.
- [25] Nagata F., Miyajima T., Teraoka K., Yokogawa Y. Preparation of porous poly(lactic acid)/hydroxyapatite microspheres intended for injectable bone substitutes. Key Eng. Mater. 2005, 284-286, 819-822.
- [26] Dobrzyński P., Kasperczyk J., Janeczek H. Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. Copolymerization of glycolide with L-lactide initiated by Zr(Acac)4. Macromolecules 2001, 34, 5090-5099.
- [27] Haberko K., Bućko M., Haberko M., Mozgawa W., Pyda A., Zarębski J. Natural hydroxyapatite - preparation, properties. Eng. Biomater. 2003, 30-33, 32-38.
Uwagi
Zakres stron na podstawie wersji drukowanej
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51cf5d51-549e-4742-a5ff-aaff51dc2aa9