PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the impact of post-process modifications on the properties of TiO2 thin films with high-temperature stable anatase phase deposited by the electron beam evaporation method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the structural, optical, tribological, and mechanical properties of as‑prepared and annealed titanium dioxide (TiO₂) coatings. TiO₂ films were deposited by the electron beam evaporation (EBE) and additionally annealed at a temperature up to 800 °C using a tubular furnace. X-ray diffraction (XRD) analysis identified the amorphous phase of coatings as-prepared and annealed at 200 °C. The phase transition to anatase occurred at 400 °C, while annealing at 600 °C and 800 °C did not induce a phase transition to the rutile phase. The crystallite size increased with an annealing up to 40.4 nm at 800 °C. Raman spectroscopy confirmed the anatase phase in thin films annealed at 400 °C and above. A scanning electron microscope (SEM) images revealed surface morphology and grain structure changes after post-process high-temperature annealing. The optical transmission measurements showed a redshift in the fundamental absorption edge with increasing annealing temperature, accompanied by a decreased transparency level. The value of an optical band gap energy (Egopt) decreased to 2.77 eV for films annealed at 800 °C. Tribological tests revealed reduced scratch resistance with higher annealing temperatures, which was attributed to increased surface roughness and coating removal. Nanoindentation measurements showed a decrease in hardness with annealing temperature, attributed to changes in crystallite size and surface morphology. This comprehensive analysis of TiO₂ thin-film coatings showed that the post-process annealing should be carefully controlled for films used in optoelectronic applications.
Rocznik
Strony
art. no. e151991
Opis fizyczny
Bibliogr. 53 poz., rys., wykr., tab.
Twórcy
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science & Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science & Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science & Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science & Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science & Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
  • Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science & Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland
Bibliografia
  • [1] Nagabharana, R. M., Kumaraswamy, G. N., Gundanna, S. K. & Bhatta, U. M. Effect of thermal annealing on structural and electrical properties of TiO2 thin films. Thin Solid Films 710, 138262 (2020). https://doi.org/10.1016/j.tsf.2020.138262
  • [2] Kerdcharoen, T. & Wongchoosuk, C. 11-Carbon Nanotube and Metal Oxide Hybrid Materials for Gas Sensing. in Semiconductors Gas Sensors (eds. Jaaniso, R. & Tan, O. K.) 386-407 (Woodhead Publishing Ltd., 2013). https://doi.org/10.1533/9780857098665.3.386
  • [3] Lu, Z., Jiang, X., Zhou, B., Wu, X. & Lu, L. Study of the effect of annealing temperature on the structure, morphology, and photocatalytic activity of Si-doped TiO2 thin films deposited by electron beam evaporation. Appl. Surf. Sci. 257, 10715-10720 (2011). https://doi.org/10.1016/j.apsusc.2011.07.085
  • [4] Lee, S. H. et al. Deposition and characterization of silicon thin film on stainless steel by electron beam evaporation. Thin Solid Films 756, 139380 (2022). https://doi.org/10.1016/j.tsf.2022.139380
  • [5] Dey, B. et al. Anatase TiO2 deposited at low temperature by pulsing an electron cyclotron wave resonance plasma source. Sci. Rep. 10, 21952 (2020). https://doi.org/10.1038/s41598-020-78956-1
  • [6] Matkivskyi, V. et al. Electronic-beam evaporation processed titanium oxide as an electron selective contact for silicon solar cells. Curr. Appl. Phys. 32, 98-105 (2021). https://doi.org/10.1016/j.cap.2021.10.005
  • [7] Bashir, A., Awan, T. I., Tehseen, A., Tahir, M. B. & Ijaz, M. Chapter 3 - Interfaces and Surfaces. in Chemistry of Nanomaterials: Fundamentals and Applications 51-87 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-818908-5.00003-2
  • [8] Mukherjee, S. K. et al. Influence of thickness on the structural properties of radio-frequency and direct-current magnetron sputtered TiO2 anatase thin films. Thin Solid Films 558, 443-448 (2014). https://doi.org/10.1016/j.tsf.2014.02.048
  • [9] Ali, S. M. & Khan, M. A. M. Annealing effects on structural, optical, and electrical properties of TiO2/FTO heterojunction. Appl. Phys. A 126, 468 (2020). https://doi.org/10.1007/s00339-020-03656-6
  • [10] Zhao, C., Child, D., Gibson, D., Placido, F. & Fu, R. Y. Q. TiO2 films prepared using plasma ion assisted deposition for photocatalytic application. Mater. Res. Bull. 60, 890-894 (2014). https://doi.org/10.1016/j.materresbull.2014.09.022
  • [11] Hasan, M. M., Haseeb, A. S. M. A., Saidur, R., Masjuki, H. H. & Hamdi, M. Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiO2 thin films. Opt. Mater. 32, 690-695 (2010). https://doi.org/10.1016/j.optmat.2009.07.011
  • [12] Taherniya, A. & Raoufi, D. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method. Semicond. Sci. Tech. 31, 125012 (2016). https://doi.org/10.1088/0268-1242/31/12/125012
  • [13] Kumi-Barimah, E. et al. Phase evolution, morphological, optical, and electrical properties of femtosecond pulsed laser-deposited TiO2 thin films. Sci. Rep. 10, 10144 (2020). https://doi.org/10.1038/s41598-020-67367-x
  • [14] Jolivet, A. et al. Structural, optical, and electrical properties of TiO2 thin films deposited by ALD: Impact of the substrate, the deposited thickness and the deposition temperature. Appl. Surf. Sci. 608, 155214 (2023). https://doi.org/10.1016/j.apsusc.2022.155214
  • [15] Bukauskas, V. et al. Effect of substrate temperature on the arrangement of ultra-thin TiO2 films grown by a DC-magnetron sputtering deposition. Thin Solid Films 585, 5-12 (2015). https://doi.org/10.1016/j.tsf.2015.04.007
  • [16] Mangrola, M .H. & Joshi, V. G. Synthesis, characterization and study of influence of pure TiO2 nanoparticles thin film developed by e-beam evaporation. Materials Today: Proc. 4, 3832-3841 (2017). https://doi.org/10.1016/j.matpr.2017.02.281
  • [17] Pillai, S. C. et al. Synthesis of high-temperature stable anatase TiO2 photocatalyst. J. Phys. Chem. C. 111, 1605-1611 (2007). https://doi.org/10.1021/jp065933h
  • [18] Pjević, D. et al. Properties of sputtered TiO2 thin films as a function of deposition and annealing parameters. Phys. B: Condens. Matter. 463, 20-25 (2015). https://doi.org/10.1016/j.physb.2015.01.037
  • [19] Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53-229 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  • [20] Hanaor, D. A. & Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855-874 (2011). https://doi.org/10.1007/s10853-010-5113-0
  • [21] Rahimi, N., Pax, R. A. & MacA. Gray, E. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 44, 86-105 (2016). https://doi.org/10.1016/j.progsolidstchem.2016.07.002
  • [22] Wen, P. C., Cai, C., Zhong, H., Hao, L. Y. & Xu, X. A simple way to synthesize anatase with high thermal stability. J. Mater. Sci. 50, 5944-5951 (2015). https://doi.org/10.1007/s10853-015-9117-7
  • [23] Wong, A., Daoud, W. A., Liang, H. & Szeto, Y. S. The effect of aging and precursor concentration on room-temperature synthesis of nanocrystalline anatase TiO2. Mater. Lett. 117, 82-85 (2014). https://doi.org/10.1016/j.matlet.2013.11.056
  • [24] Lin, C. P., Chen, H., Nakaruk, A., Koshy, P. & Sorrell, C. C. Effect of annealing temperature on the photocatalytic activity of TiO2 thin films. Energy Procedia 34, 627-636 (2013). https://doi.org/10.1016/j.egypro.2013.06.794
  • [25] Fagan, R., Synnott, D. W., McCormack, D. E. & Pillai, S. C. An effective method for the preparation of high-temperature stable anatase TiO2 photocatalysts. Appl. Surf. Sci. 371, 447-452 (2016). https://doi.org/10.1016/j.apsusc.2016.02.235
  • [26] Khan, A. F., Mehmood, M., Durrani, S. K., Ali, M. L. & Rahim, N. A. Structural and optoelectronic properties of nanostructured TiO2 thin films with annealing, Mater. Sci. Semicond. Process. 29, 161-169 (2015). https://doi.org/10.1016/j.mssp.2014.02.009
  • [27] Klug, H. P. & Alexander, E. E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley and Sons, New York, 1974).
  • [28] Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564-1583 (1992). https://doi.org/10.1557/JMR.1992.1564
  • [29] Wiatrowski, A. et al. Comparison of the physicochemical properties of TiO2 thin films obtained by magnetron sputtering with continuous and pulsed gas flow. Coatings 8, 412 (2018). https://doi:10.3390/coatings8110412
  • [30] Obstarczyk, A. et al. Influence of post-process annealing temperature on structural, optical, mechanical, and corrosion properties of mixed TiO2-WO3 thin films. Thin Solid Films 698, 137856 (2020). https://doi.org/10.1016/j.tsf.2020.137856
  • [31] ISO/TC 172/SC 7/WG 3N30 Standard, Spectacle Lenses: Test Method for Abrasion Resistance (1998). https://www.iso.org/committee/53738.html
  • [32] Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, Card 21-1272 - PDF (1969). https://www.icdd.com/pdf-5/
  • [33] Li, J., Liu, L. & Sham, T. K. 2D XANES–XEOL Spectroscopy studies of morphology-dependent phase transformation and corresponding luminescence from hierarchical TiO2 nanostructures. Chem. Mater. 27, 3021-3029 (2015). https://doi.org/10.1021/acs.chemmater.5b00363
  • [34] Liu, S., Yu, J. & Jaroniec, M. Anatase TiO2 with dominant high-energy {001} facets: Synthesis, properties, and applications. Chem. Mater. 23, 4085-4093 (2011). https://doi.org/10.1021/cm200597m
  • [35] Garzella, C., Comini, E., Tempesti, E., Frigeri, C. & Sberveglieri, G. TiO2 thin films by a novel sol-gel processing for gas sensor applications. Sens. Actuators B Chem. 68, 189-196 (2000). https://doi.org/10.1016/S0925-4005(00)00428-7
  • [36] Grover, I. S., Singh, S. & Pal, B. Stable anatase TiO2 formed by calcination of rice-like titania nanorod at 800 °C exhibits high photocatalytic activity. RSC Adv. 4, 24704-24709 (2014).https://doi.org/10.1039/C4RA01850H
  • [37] Zhang, Q. & Li, C. High temperature stable anatase phase titanium dioxide films synthesized by mist chemical vapor deposition. Nanomaterials 10, 911 (2020). https://doi.org/10.3390/nano10050911
  • [38] Ainuddin, A. R. & Aziz, N. A. Thermal post-treatment of TiO2 films via sol-gel for enhanced corrosion resistance. J. Eng. Appl. Sci. 14 8698-8703 (2016). https://www.arpnjournals.org/jeas/research_ papers/rp_2016/jeas_0716_4663.pdf
  • [39] Zenkovets, G. A., Shutilov, A. A. & Gavrilov, V. Y. Heat-resistant TiO2 nanocomposites with anatase phase as carriers for highly efficient CO oxidation catalysts. Mater. Res. Bull. 145, 111538 (2022). https://doi.org/10.1016/j.materresbull.2021.111538
  • [40] Miller, M. J. & Wang, J. Coupled effects of deposition and annealing temperatures on optical, electrical, and mechanical properties of titanium oxide thin films. Vacuum 120, 155-161 (2015). https://doi.org/10.1016/j.vacuum.2015.07.005
  • [41] Zhao, Z. W. & Tay, B. K. Study of nanocrystal TiO2 thin films by thermal annealing. J. Electroceramics 16, 489-943 (2006). https://doi.org/10.1007/s10832-006-9903-3
  • [42] Nair, P. B. et al. Effect of RF power and sputtering pressure on the structural and optical properties of TiO2 thin films prepared by RF magnetron sputtering. Appl. Surf. Sci. 257, 10869-10875 (2011). https://doi.org/10.1016/j.apsusc.2011.07.125
  • [43] Mazur, M., Kaczmarek, D., Domaradzki, J., Wojcieszak, D. & Poniedziałek, A. Influence of material composition on structural and optical properties of HfO2-TiO2 mixed oxide coatings. Coatings 6, 13 (2016). https://doi.org/10.3390/coatings6010013
  • [44] Jena, S. et al. Effect of O2/Ar gas flow ratio on the optical properties and mechanical stress of sputtered HfO2 thin films. Thin Solid Films 592, 135-142 (2015). https://doi.org/10.1016/j.tsf.2015.08.062
  • [45] Alhomoudi, I. A. & Newaz, G. Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517, 4372-4378 (2009). https://doi.org/10.1016/j.tsf.2009.02.141
  • [46] Gupta, S. K. et al. Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO2) thin films. Appl. Surf. Sci. 264, 737-742 (2013). https://doi.org/10.1016/j.apsusc.2012.10.113
  • [47] Kadam, R. M. et al. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy. Spectrochim. Acta A 137, 363-370 (2015). https://doi.org/10.1016/j.saa.2014.08.082
  • [48] Nezar, S. et al. Properties of TiO2 thin films deposited by rf-reactive magnetron sputtering on biased substrates. Appl. Surf. Sci. 395, 172-179 (2016). https://doi.org/10.1016/j.apsusc.2016.08.125
  • [49] Pawar, S. et al. Fabrication of nanocrystaline TiO2 thin film ammonia vapor sensor. J. Sens. Technol. 1, 9-16 (2011). https://doi.org/10.4236/jst.2011.11002
  • [50] Vishwas, M., Narasimha Rao, K. & Chakradhar, R. P. S. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO2 thin films. Spectrochim. Acta A. 99, 33-36 (2012). https://doi.org/10.1016/j.saa.2012.09.009
  • [51] Heo, C. H., Lee, S. B. & Boo, J. H. Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics. Thin Solid Films 475, 183-188 (2005). https://doi.org/10.1016/j.tsf.2004.08.033
  • [52] Karuppasamy, A. & Subrahmanyam, A. Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas. J. Appl. Phys. 101, 064318 (2007). https://doi.org/10.1063/1.2714770
  • [53] Gao, F. M. & Gao, L. H. Microscopic models of hardness. J. Superhard Mater. 32, 148-166 (2010). https://doi.org/10.3103/S1063457610030020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51ca8379-57da-4543-80d6-97fe44a1f759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.