PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oczyszczanie gazu procesowego ze zgazowania węgla – kierunki rozwoju technologicznego

Identyfikatory
Warianty tytułu
EN
Purification of the syngas from coal gasification – development trends
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano najnowsze informacje dotyczące kierunków rozwoju technologii/procesów oczyszczania gazu procesowego ze zgazowania węgla kamiennego. Przedstawiono najnowsze doniesienia z kraju jak i z zagranicy oraz omówiono kierunki badań technologii oczyszczania gazu procesowego rozwijanych w Instytucie Chemicznej Przeróbki Węgla w ramach Strategicznego Programu Badań Naukowych i Prac Rozwojowych „Zaawansowane technologie pozyskiwania energii” w ramach Zadania Badawczego nr 3 pt.: „Opracowanie technologii zgazowania węgla dla wysokoefektywnej produkcji paliw i energii elektrycznej”.
EN
The paper presents the latest information concerning direction of development of technologies/processes of process gas cleaning in the course of hard coal gasification The latest domestic and foreign reports on the subject were presented and, the trends in the research on process gas cleaning technologies developed were presented that are being developed in the Institute for Chemical Processing of Coal within the Strategic Programme for Research and Development "Advanced technologies of power generation" within the Research Tasks No. 3: "Development of coal gasification technologies for highly efficient production of fuels and electricity".
Czasopismo
Rocznik
Tom
Strony
65--78
Opis fizyczny
Bibliogr. 99 poz., rys., tab.
Twórcy
autor
  • Instytut Chemicznej Przeróbki Węgla, Zabrze
  • Instytut Chemicznej Przeróbki Węgla, Zabrze
autor
  • Instytut Chemicznej Przeróbki Węgla, Zabrze
autor
  • Instytut Chemicznej Przeróbki Węgla, Zabrze
autor
  • Instytut Chemicznej Przeróbki Węgla, Zabrze
Bibliografia
  • 1. Advanced Energy Systems - Gasification Systems, Project Portfolio; US DOE/NETL, 2012 - http://www.netl.doe.gov/technologies/coalpower/gasification/pubs/pdf/ GasificationSystemsProjectPortfolio.pdf.
  • 2. Gasification Technologies; Gasification Markets and Technologies - Present and Future, An Industry Perspective; U.S. Department of Energy Report, June 2002.
  • 3. Chmielniak T., Tomaszewicz G., Zgazowanie Paliw stałych -stan obecny i przewidywane kierunki rozwoju. Karbo, 2012, t. 57, nr 3, s. 191.
  • 4. Chmielniak T., Ściążko M., Clean energy, Chemical products and fuels from coal - assessment of the status of gasification technology development (Chapter 4.1, 97-114). Borowiecki T., Kijeński J., Machnikowski J., Ściążko M. (eds.); Published by the Institute for Chemical Processing of Coal, Zabrze 2008, ISBN 978-83-913434 9 (In Polish).
  • 5. Current and Future Technologies for Gasification-Based Power Generation, Volume 2: A Pathway Study Focused on Carbon Capture Advanced Power Systems R&D Using Bituminous Coal, October 7, 2010; DOE/NETL-2009/1389, available at http://www.netl.doe.gov/technologies/coalpower/gasification.
  • 6. WORK PROGRAMME 2007; COOPERATION; THEME 5; ENERGY, European Commission C(2007)560; 26.02.2007
  • 7. Gupta R., Turk B., Lesemann M., RTI/Eastman Warm Syngas Clean-up Technology: Integration with Carbon Capture. Gasification Technologies Conference, 2009.
  • 8. Ciocco M. V., Morreale B.D., Rothenberger K.S., Howard B.H., Killmeyer R.P., Enick R.M., Bustamante F., Water Gas Shift Membrane Reactor Studies, National Energy Technology Laboratory - www.netl.doe.gov/.../WGS%20Membrane%20Reactor%20Studies.pdf
  • 9. Lund C.R.F., Water-Gas Shift Kinetics over Iron Oxide Catalysts at Membrane Reactor Conditions. DE-FG2699-FT40590, Chemical Engineering Department, University at Buffalo.
  • 10. Pex P.P.A.C., van Delft Y.C., Silica Membranes for Hydrogen Fuel Production by Membrane Water Gas Shift Reaction and Development of a Mathematical Model for a Membrane Reactor, Carbon Dioxide Capture for Storage in Deep Geologic Formations - Results from the CO2 Capture and Separation of Carbon Dioxide from Combustion Sources, Volume 1, Chapter 17.
  • 11. http://www.ncbir.pl/programy-strategiczne/
  • 12. http://www.zgazowaniewegla.agh.edu.pl
  • 13. Parekh R.D., Handbook of gasifiers and gas treatment, National Technical Information Service, Springfield 1982.
  • 14. Jess A., Thermische und katalysche Spaltung von Kohlenwasserstoffe in wasserstoff- und wasserdampreicherAtmosphare - Eine Modelluntersuchung zur Erzeugung von Reduktiongas aus Kokofenrohgas, Habilitation Thesis, University of Karlsruhe, 1996.
  • 15. Jess A., Catalytic upgrading of tarry fuel gases: A kinetic study with model components. Chem. Eng. a. Proces., 1996, t. 35, s. 487.
  • 16. Jess A., Mechanisms and kinetic of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels. Fuel, 1996, t. 75, nr 12, s. 1441.
  • 17. Devi L., Catalytic removal of biomass tars; Olivine as prospective in-bed catalyst for fluidized-bed biomass gasifiers. PhD Thesis, University of Eindhoven, 2005.
  • 18. Babiński P., Łabojko G., Wykorzystanie wysokotemperaturowej konwersji związków smołowych w procesie oczyszczania surowego gazu ze zgazowania paliw stałych. Polityka Energetyczna, 2012, t. 15, s. 298.
  • 19. Yung M.M., Jablonski W.S., Magrini-Bair K.A., Review of catalytic conditioning of biomass-derived syngas. Energy & Fuels, 2009, t. 23, s. 1874.
  • 20. Devi L., Ptasinski K.J., Janssen F.J.J. G., van Paasenb S.V.B., Bergman P.C.A. , Kiel J.H.A., Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy, 2005, t. 30, s. 565.
  • 21. Gusta E., Ajay K., Dalai A.K., Uddin Md.A., Sasaoka E., Catalytic decomposition of biomass tars with dolomite. Energy & Fuels, 2009, t. 23, s. 2264.
  • 22. Kuhn J.N., Zhao Z, Felix L.G., Slimane R. B., Choi C. W., Ozkan U. S., Olivine catalysts for methane- and tar-steam reforming. Applied Catalysis B: Environmental, 2008, t. 81, s. 14.
  • 23. Świerczyński D., Libs S., Courson C., Kiennemann A., Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental, 2007, t. 74, s. 211.
  • 24. Łamacz A., Krztoń A., Musi A., Da Costa P., Reforming of model gasification tar compounds. Catalysis Letters, 2009, t. 128, s. 40.
  • 25. Miyazawa T., Kimura T., Nishikawa J., Kado S., Kunimori K, Tomishige K., Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catalysis Today, 2006, t. 115, s. 254.
  • 26. Kimura T., Miyazawa T., Nishikawa J., Kado S., Okumura K., Miyao T., Naito S., Kunimori K, Tomishige K, Development of Ni catalysts for tar removal by steam gasification of biomass. Applied Catalysis B: Environmental, 2006, t. 68, s. 160.
  • 27. Park H.J., Park S.H., Sohn J.M., Park J., Jeon J.K., Kim S.-S., Park Y.-K., Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. Bioresource Technology, 2010, t. 101, s. 101.
  • 28. Wang T.J., Chang J., Wu C.Z., Fu Y., Chen Y., The steam reforming of naphthalene over a nickel-dolomite. Biomass and Bioenergy, 2005, t. 28, s. 508.
  • 29. Nordgreen T., Liliedahl T., Sjostrom K., Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass. Fuel, 2006, t. 85, s. 689.
  • 30. Albertazzia S., Basilea F, Brandin G., Einvall J., Fornasari G., Hulteberg C., Sanatic M., Trifiro F., Vaccari A., Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas. Biomass and Bioenergy, 2008, t. 32, s. 345.
  • 31. Engelen K., Hang Y., Draelants D.J., Baron G.V, A novel catalytic filter for tar removal from biomass gasification gas: Improvement of the catalytic activity in presence of H2S. Chem. Eng. Sc., 2003, t. 58, s. 665.
  • 32. Nagai T., Kajitani S., Development of IGCC demonstration plant - from 200 t/d pilot plant to 250 mw demonstration plant. J. Japn. Inst. Energy, 2007, t. 86, s. 315.
  • 33. Nakamura K., J. Japn. Inst. Energy, 2007, t. 86, s. 321.
  • 34. Srinivasa S., Ogden J., (S. Srinivasan, Ed.) Fuel cells from fundamentals to applications. New York. Springer, 2006, s. 375.
  • 35. Konttinen J.T., Zevenhoven C.A.P., Hupa M.M., Hot Gas Desulfurization with Zinc Titanate Sorbents in a Fluidized Bed. 2. Reactor Model. Ind. Eng. Chem. Res., 1997, t. 36, s. 2340.
  • 36. Kohl A., Nielsen R., Gas Purification (Fifth Edition); Gulf Publishing Company, Houston, Texas (1997).
  • 37. Preliminary Feasibility Analysis of RTI Warm Gas Cleanup (WGCU) Technology; NEXANT (2007).
  • 38. Warm Clean-Up Gas and Carbon Capture & Sequestration Demonstration Project Overview; Gasification Technologies Council, April 6,2011.
  • 39. Hornick M., Gardner B., Warm Gas Cleanup and CCS Demonstration at Tampa Electric’s Polk Power Station, Gasification Technologies Council, October 11(2011); - http://www.netl.doe.gov/technologies/coalpower/gasification/projects/gas-clean/00489/19HORNICK.pdf
  • 40. RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology; NETL, The Energy Lab, Project Facts, Gasification Technologies; - http://www.netl.doe.gov/publications/factsheets/project/FE0000489.pdf
  • 41. Bakker W.J.W, Kapteijn F., Moulijn J.A., A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production - Conceptual process application to coal gas cleaning. Chem. Eng. J., 2003, t. 96, s. 223.
  • 42. Sprawozdanie z Części Tematu Badawczego nr 2.3.4 pt.: Badania procesu wysokotemperaturowego usuwania H2S i NH3 z gazu procesowego z wykorzystaniem adsorbentów monolitycznych, 2010.
  • 43. Cole J., Controlling environmental nitrogen through microbial metabolism. TIBTECH 1993, nr 11, s. 368.
  • 44. Boer V, Huisman H.M., Mos R.J.M., Leliveld R.G., Dillen A.J., Geus J.W., Selective oxidation of ammonia to nitrogen over SiO2-supported MoO3 catalysts. Catalysis Today 1993, t. 17, s. 189.
  • 45. WollnerA., Lange F., Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Applied Catalysis A: 1993, t. 94, s. 181.
  • 46. Sazonova N.N., Simakov A.V, Nikoro T.A., Barannik G.B., Lyakhova V.F., Zheivot V.I., Ismagilov Z.R., Veringa H., Selective catalitic oxydation of ammonia to nitrogen. React. Kinet. Catal. Lett., 1996, t. 57, nr 1, s. 71.
  • 47. Li Y., Armor J.N., Selective NH3 oxidation to N2 in a wet stream. Applied Catalysis B: Environmental, 1997, t. 13, nr 2, s. 13.
  • 48. Gang L., Grondelle J., Anderson B.G., van Santen R.A., Selective Low Temperature NH3 Oxidation to N2 on Copper-Based Catalysts. Journal of Catalysis, 1999, t. 186, nr 1, s. 100.
  • 49. Ostermaier J.J., Katzer J.R., Manoque W.H., Platinum catalyst deactivation in low-temperature ammonia oxidation reactions: I. Oxidation of ammonia by molecular oxygen. Journal of Catalysis, 1976, t. 41, nr 2, s. 277.
  • 50. Jones J.M., Pourkashanian M., Williams A., Backreedy R.I., Darvell L.I., Simell P., Heiskanen K,. Kilpinen P., The selective oxidation of ammonia over alumina supported catalysts-experiments and modelling. Applied Catalysis B: Environmental, 2005, t. 60, s. 139.
  • 51. Gang L., Anderson B.G., Grondelle J., Santen R.A., Gennip W.J.H., Niemantsverdriet J.W., Kooynan P.J., Knoester A., Brongersma H.H., Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature. Journal of Catalysis, 2002, t 206, nr 1, s. 60.
  • 52. Olofsson G., Wallenberg L.R., Andersson A., Selective Catalytic Oxidation of Ammonia to Nitrogen at Low Temperature on Pt/Cu0/Al2O3. J. Catal., 2005, t. 230, s. 1.
  • 53. Leppalahti J., Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark. Fuel, 1995, t. 74, nr 9, s. 1363.
  • 54. Bradford M.C.J., Fanning P.E., Vannice M.A., Kinetics of NH3 Decomposition over Well Dispersed Ru. J. Catal., 1997, t. 172, nr 2, s. 267.
  • 55. Yin S.F., Xu B.Q., Ng C.F., Au C.T., Nano Ru/CNTs: a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition. Applied Catalysis B: Environmental, 2004, t. 48, nr 4, s. 237.
  • 56. Wang S.J., Yin S.F., Li L., Xu B.Q., Ng C.F., Au C.T., Investigation on modification of Ru/CNTs catalyst for the generation of COx-free hydrogen from ammonia. Applied Catalysis B: Environmental, 2004, t. 52, nr 4, s. 287.
  • 57. Yin S.F., Xu B.Q., Zhou X.P, Au C.T., A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Applied Catalysis A: General, 2004, t. 277, nr 1-2, s. 1.
  • 58. Djega-Mariadassou G., Shin C.-H., Bugli G., Tamaru’s model for ammonia decomposition over titanium oxynitride. Journal of Molecular Catalysis A: Chemical, 1999, t. 141, nr 1-3, s. 263.
  • 59. Choi J.G., Ammonia decomposition over vanadium carbide catalysts. Journal of Catalysis, 1999, vol. 182, nr 1, s. 104.
  • 60. Carbon Dioxide Capture Separation Technology: R&D Needs for the Chemical and Petrochemical Industries, 2007; http://www.chemicalvision2020.org/pdfs/C02_Separation_Report_V2020_final.pdf
  • 61. Polasek J.C., Donelly S.T., Bullin J.A., The Use of MDEA and Mixutes of Amines for Bulk CO2 Removal. AIChE National Meeting, Orlando, FL 1990.
  • 62. Budner Z., Sprawozdanie merytoryczne części Tematu Badawczego nr 2.3.1: pt.: Badania absorpcyjnego usuwania CO2 z gazów procesowych ze zgazowania węgla. Systematyczne badania absorpcji CO2, 2011.
  • 63. Stanmore B.R., Gilot P., Review - calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Proces. Technol., 2005, t. 86, nr 16, s. 1707.
  • 64. Nikulshina V., Gálvez E., Steinfeld A., Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chem. Eng. J., 2007, t. 129, nr 1-3, s. 75.
  • 65 .Diego M.E., Arias B., Abanades J.C., Modeling the solids circulation rates and solids inventories of an interconnected circulating fluidized bed reactor system for CO2, capture by calcium looping. Chem. Eng. J., 2012, t. 198-199, s. 228.
  • 66. Florin N.H., Harris A.T., Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem. Eng. Sc., 2009, t. 64, nr 2, s. 187.
  • 67. Wang J., Manovic V., Wu Y, Anthony E.J., A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes. Applied Energy, 2010, t. 87, nr 4, s. 1453.
  • 68. Manovic V., Anthony E.J., Loncarevic D., CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature. Chem. Eng. Sc., 2009, t. 64, s. 3236.
  • 69. Martavaltzi Ch.S., Lemonidou A.A., Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous and Mesoporous Materials, 2008, t. 110, s. 119.
  • 70. Wu S., Uddin M.A. Sasaoka E., Effect of pore size distribution of Calcium Oxide High - temperature Desulfurization sorbent on its sulfurization and consecutive oxidative decomposition. Energy & Fuels, 2005, t. 19, nr 3, s. 864.
  • 71. Li Y., Zhao Ch., Chen H., Liang C., Duan L., Zhou W., Modified CaO-based sorbent looping cycle for CO2 mitigation. Fuel, 2009, t. 88, s. 697.
  • 72. Martavaltzi Ch.S., Pampaka E.P., Korkakaki E.S., Lemonidou A.A., Hydrogen Production via Steam Reforming of Methane with Simultaneous CO2 Capture over CaO-Ca12Al14O33. Energy & Fuels, 2010, t. 24, s. 2589.
  • 73. Alvarez D., Abanades J.C., Pore size and shape effect on the recarbonation performance of calcium oxide submitted to repeated calcination/recarbonation cycles. Energy & Fuels, 2005, t. 19, s. 270.
  • 74. Manovic V., Anthony E.J., Parametric study on CO2 capture capacity of CaO-based sorbents in looping cycles. Energy & Fuels, 2008, t. 22, s. 1851.
  • 75. Kotyczka-Moranska M., Tomaszewicz G., Application of polish calcium sorbents. Physicochemical Problems of Mineral Processing, 2013, t. 49, s. 495.
  • 76. Mondal M.K., Balsora H.K., Varshney P., Progress and trends in CO2 capture/separation technologies: A review. Energy, 2012 http://dx.doi.org/10.1016/j.energy.2012.08.006.
  • 77. Radosz M., Hu X., Krutkramelis K., Shen Y., Flue-gas carbon capture on carbonaceous sorbents: Towards a low-cost multifunctional carbon filter for „green” energy producers. Ind. Eng. Chem. Res., 2008, t. 47, s. 3783.
  • 78. Seung-Hyun Moon, Jae-Woon Shim, A novel process for CO2/CH4 gas separation on activated carbon fibres - electric swing adsorption. Journal of Colloid a. Interface Science 2006, t. 298, s. 523.
  • 79. Plaza M.G., Garcia S., Rubiera F, Pis J.J., Pevida C., Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies, Chem. Eng. J., 2010, t. 163, s. 41.
  • 80. Aaron D., Tsouris C., Separation of CO2 from flue gas: A review. Separation Science a. Technology 2005, t. 40, s. 321.
  • 81. Gasification Systems Program - Slide Library Gasification Systems Overview v3.0, July 12, 2012.
  • 82. http://www.netl.doe.gov/technologies/coaIpower/gasification/pubs/pdf/Advanced%20 CO2%20Capture%20Technology%20 for%20Low%20Rank%20Coal%20%20TDA.pdf
  • 83. http://www.netl.doe.gov/publications/factsheets/project/FE0007966.pdf
  • 84. A New Experimental Unit for Demonstrating Pre-combustion CO2 Capture available at http://caesar.ecn.nl/fileadmin/caesar/user/documents/b-07-043-versie-2.pdf.
  • 85. http://en.wikipedia.org/wiki/Hydrotalcite
  • 86. Wright A.D., White V, Hufton J.R., Quinn R., Cobden P.D., van Selow E.R., CAESAR: Development of a SEWGS model for IGCC. Energy Procedia, 2011, nr 4, s. 1147.
  • 87. CAESAR: Carbon-free Electricity production by SEWGS: Advanced materials, Reactors and process design available at http://caesar.ecn.nl/home/.
  • 88. Gazzani M., Macchi E., Manzolini G., CAESAR: SEWGS integration into an IGCC plant. Energy Procedia, 2011, nr 4, s. 1096.
  • 89. http://www.netl.doe.gov/publications/factsheets/project/FE0007759.pdf
  • 90. HuftonJ., Golden T., Quinn R., Kloosterman J., Wright A., Schaffer Ch., Hendershot R., White V, Fogash K., Advanced hydrogen and CO2 capture technology for sour syngas. Energy Procedia, 2011, nr 4, s. 1082.
  • 91. http://www.airproducts.com/~/media/downloads/h/h2psa-for-sour-syngas/data-sheets/en-psa-for-co2-capture-from-sour-syngas-datasheet.pdf
  • 92. http://www.scribd.com/doc/25442432/30-Years-of-PSA-Technology-for-Hydrogen.
  • 93. http://www.netl.doe.gov/technologies/coalpower/gasification/gas-sep/index.html
  • 94. Mundschau M., Hydrogen Transport Membranes, Patent number: WO 03/076050, Membrane Technology, December 2003.
  • 95. http://www.netl.doe.gov/publications/factsheets/project/NT42469.pdf
  • 96. Jack D., CO2 Capture and Hydrogen Production in IGCC Power Plants. Eltron Research & Development, Gasification Technologies Conference, 2008.
  • 97. Jack D., Evenson C., Faull J., Anderson D., Mundschau M, Mackay R., CO2 capture using dense hydrogen transport membranes. Sixth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, Pennsylvania, 2007.
  • 98. Jack D., Evenson C., Faull J., Anderson D., Mackay R., Stotter J., Bailey D., Scale-Up of Hydrogen Transport Membranes for Carbon Capture Applications. Eltron Research & Development Gasification Technologies Conference, 2011.
  • 99. Chmielniak T., Dreszer K., Uwarunkowania techniczne i ekonomiczne nowych technologii wykorzystania węgla. Chemik, 2010, t. 64, nr 11, s. 759.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51c35e4b-0d70-40a8-924a-22faca6aee51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.