PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intergranular Corrosion of the as Cast Hypoeutectic Zinc-Aluminium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the research results of the solenoid housing made of the Zn4Al1Cu alloy that was destroyed as a result of corrosion. Surface of the tested part showed macroscopically the features typical for white corrosion, and the resulting corrosion changes led to a disturbance of the alloy cohesion. The research performed have shown that the tested solenoid valve has intergranular corrosion as a reaction of the environment containing road salt. The corrosion was initiated in the areas of the alfa phase existence appearing in the eutectic areas which propagated over dendritic areas of the alloy. Initiation of the corrosion followed as a result of the galvanic effect of the alfa phase reach in aluminium showing higher electrochemical potential, in contact with the eta phase reach in zinc. The impact of the phase reach in lead present in the microstructure on the corrosion processes run was not found.
Rocznik
Strony
79--84
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Materials Science, Strength and Welding, Wrocław University of Science and Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Faculty of Technology and Natural Sciences, Wrocław University of Science and Technology ul. S. Batorego 9, 59-220 Legnica, Poland
Bibliografia
  • [1] Ares, A.E. & Gassa, L.M. (2012). Corrosion susceptibility of Zn-Al alloys with different grains and dendritic microstructures in NaCl solutions. Corrosion Science. 59, 290-306.
  • [2] Zyska, A., Konopka, Z., Łągiewka, M., Nadolski, M. & Chojnacki, A. (2009). High-aluminium zinc alloy (ZnAl27Cu2) modified with titanium and boron. Archives of Foundry Engineering. 9(4), 237-240.
  • [3] Michalik, R., Tomaszewska, A. & Woźnica, H. (2011). The microstructure of Zn7Al3Cu coatings affected by the corrosive environment. Inżynieria Materiałowa. 32(4), 584-587. (in Polish).
  • [4] Krajewski, W.K. (2013). Alloy zinc alloys. Types, properties, application. Wyd. Akapit, Kraków. (in Polish).
  • [5] Krajewski, W.K., Greer, A.I. & Krajewski, P.K. (2013). Trends in the development of high-aluminium zinc alloys of stable structure and properties. Archives of Metallurgy and Materials. 58(3), 845-847.
  • [6] Zyska, A., Konopka, Z., Łągiewka, M. & Nadolski M. (2014). The assessment of modification of high-zinc aluminium alloy. Archives of Foundry Engineering. 14(2), 53-56.
  • [7] Prosek, T., Hagström, J., Persson, D., Fuertes, N., Lindberg, F., Chocolatý O., Taxén C., Šerák J., Thierry D. (2016). Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability. Corrosion Science. 110, 71-81.
  • [8] Yasakau, K.A., Kallip, S., Lisenkov, A., Ferreira, M.G.S. & Zheludkevich, M.L. (2016). Initial stages of localized corrosion at cut-edge of adhesively bonded Zn and Zn-Al-Mg galvanized steel. Electrochimica Acta. 211, 126-141.
  • [9] Salgueiro, A.M., Allély, C., Ogle, K. & Volovitch, P. (2015). Corrosion mechanisms of Zn(Mg,Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corrosion Science. 90, 482-490.
  • [10] Sullivan, J., Penney, D., Elvins, J. & Khan, K. (2016). The effect of ultrasonic irradiation on the microstructure and corrosion rate of a Zn-4,8 wt.% Al galvanising alloy used in high performance construction coatings. Surface & Coatings Technology. 306, 480-489.
  • [11] Prosek, T., Dan, P., Stoulil, J. & Thierry, D. (2014). Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions. Corrosion Science. 86, 231-238.
  • [12] Wang, Y.-Q., Kong, G. & Che, C.-S. (2016). Corrosion behaviour of Zn-Al alloys in saturated Ca(OH)2 solution. Corrosion Science. 112, 679-686.
  • [13] Ahmed, M.M. (2006). Corrosion behaviour of Zn-Al-Cu alloy in HCl solution and its inhibition. Portugaliae Electrochimica Acta. 24, 1-22.
  • [14] Mosińska, S., Lange, A., Pstruś, J. & Gancarz, T. (2013). Investigation of solder properties based on Zn-Al eutectic with copper addition. Przegląd Spawalnictwa. 9, 35-38. (in Polish).
  • [15] Kumar, Das S. & Kumar Bhattacharya, D. (2003). Corrosion failure of Zn-Al detonator housing. Engineering Failure Analysis. 10, 639-643.
  • [16] Kang, N., Na, H.S., Kim, S.J. & Kang, C.-Y. (2009). Alloy design of Zn-Al-Cu solder for ultra high temperatures. Journal of Alloys and Compounds. 467, 246-250.
  • [17] da Costa, E.M., da Costa, C.E., Dalla Vecchia, F., Rick, C., Scherer, M., dos Santos, C.A. & Dedavid, B.A. (2009). Study of the influence of copper and magnesium additions on the microstructure formation of Zn-Al hypoeutectic alloys. Journal of Alloys and Compounds. 488, 89-99.
  • [18] Kim, S.-J., Kim, K.-S., Kim, S.-S., Kang, C.-Y. & Suganuma K. (2008). Characteristics of Zn-Al.-Cu alloys for high temperature solder application. Materials Transactions. 49(7), 1531-1536.
  • [19] Zhang, X.G. (1996). Corrosion and Electrochemistry of Zinc. New York: Springer Science and Business Media, LLC.
  • [20] Baszkiewicz, J., Kamiński, M. (2006). Corrosion of materials. Warszawa: Of. Wyd. PW. (in Polish),
  • [21] Białobrzeski A., Czekaj E., Heller M. (2002). Corrosion properties of aluminum and magnesium alloys processed by die casting technology. Archives of Foundry. 2(3), 294-313. (in Polish).
  • [22] Ares, A.E., Gassa, L.M., Schvezov, C.E. & Rosenberger, M.R. (2012). Corrosion and wear resistance of hypoeutectic Zn-Al alloys as function of structural features. Materials Chemistry and Physics. 136, 394-414.
  • [23] Elvins, J.. Spittle, J.A. & Worsley, D.A. (2005). Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion. Corrosion Science. 47, 2740-2759.
  • [24] Jasionowski, R., Polkowski, W. & Zasada, D. (2016). Destruction mechanism of ZnAl4 as cast alloy subjected to cavitational erosion using different laboratory stands. Archives of Foundry Engineering. 16(1), 19-24.
  • [25] Osorio, W.R., Freire, C.M. & Garcia, A. (2005). The effect of the dendritic microstructure on the corrosion resistance of Zn-Al alloys. Journal of Alloys and Compounds. 397, 179-191.
  • [26] Osorio, W.R., Freire, C.M. & Garcia, A. (2005). The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Materials Science and Engineering A. 402, 22-32.
  • [27] Yang, L., Zhang, Y., Zeng, X. & Song, Z. (2012). Corrosion behaviour of superplastic Zn-Al alloys in simulated acid rain. Corrosion Science. 59, 229-237.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51c2b565-8a70-4280-95d4-817dbd90afe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.