PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion process assessment using a novel type of coupon installation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this experimental study is to test the novel type of coupon installation. This set-up was used to carry out the corrosion process under aggressive conditions. Moreover, the effect of corrosion inhibitors on the scale-forming tendency was evaluated. The corrosive conditions were defined by using the Langelier Saturation Index (this index is an approximate indicator of the degree of saturation of CaCO3 in water) and the Ryznar stability index (this index is allowed to determine if the liquid sample is aggressive or not). Additionally, the inductively coupled plasma optical emission spectroscopy analysis was used to obtain the iron and calcium ions concentrations in the liquid samples from the tested coupon installation. The corrosion process for the established conditions was also described using the corrosion rate of the tested coupons. The obtained investigation contributes significantly by developing the novel coupon installation and demonstrating the procedure for testing the corrosion process with the application of coupons. This setup and method might be successfully applied for accelerated laboratory tests.
Słowa kluczowe
Rocznik
Strony
84--88
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wz.
Twórcy
autor
  • ESC Global sp. z o.o.
  • ESC Global sp. z o.o.
  • ESC Global sp. z o.o.
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, 42 Piastów Avenue, 71-065 Szczecin, Poland
Bibliografia
  • 1. Castro, L., Merino, S., Levenfeld, B., Várez, A. & Torralba, J.M. (2003). Mechanical properties and pitting corrosion behaviour of 316L stainless steel parts obtained by a modified metal injection moulding process. J. Mater. Process. Technol. 143–144, 397–402. DOI:10.1016/S0924-0136(03)00402-3.
  • 2. Wranglen, G. (1972). An introduction to corrosion and protection of metals. Anti-Corrosion Methods Mater. 19(11), 5. DOI:10.1108/eb006887.
  • 3. Comensoli, L., Albini, M., Kooli, W., Maillard, J., Lombardo, T., Junier, P. & Joseph, E. (2022). Investigation of biogenic passivating layers on corroded iron. Materials (Basel). 13(5), 1176. DOI:10.3390/ma13051176.
  • 4. Rehm, B., Haghshenas, A., Paknejad, A., Al-Yami, A., Hughes, J. & Schubert J. (2012). Underbalanced Drilling: Limits and Extremes. Gulf Publishing Company, Houston, US. DOI:10.1016/C2013-0-15513-4.
  • 5. Sellers, R.S., Cheng, W.J., Kelleher, B.C., Anderson, M.H., Sridharan, K., Wang, Ch.-J. & Allen, T.R. (2014). Corrosion of 316L stainless steel alloy and Hastelloy-N superalloy in molten eutectic LiF-NaF-KF salt and interaction with graphite. Nucl Technol. 188(2), 192–199. DOI:10.13182/NT13-95.
  • 6. Al-Rawajfeh, A.E., Glade, H. & Ulrich, J. (2005). Scaling in multiple-effect distillers: The role of CO2 release. Desali-nation. 182(1–3), 209–219. DOI:10.1016/j.desal.2005.04.013.
  • 7. Alsaqqar, A.S., Khudair, B.H. & Ali, S.K. (2014). Evaluating Water Stability Indices from Water Treatment Plants in Baghdad City. J Water Resour Prot. 6(14), 1344–1351. DOI:10.4236/jwarp.2014.614124.
  • 8. Abbasnia, A., Yousefi, N., Mahvi, A.H., Nabizadeh, R., Radfard, M., Yousefi, M. & Alimohammadi, M. (2019). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Hum. Ecol. Risk. Assess. 25(4), 988–1005. DOI:10.108 0/10807039.2018.1458596.
  • 9. Shammi, R.S., Hossain, M.S., Kabir, M.H., Islam, M.S., Taj, M.T.I., Islam, M.S., Sarker, M.E., Hossain, M.S. & Idris, A.M. (2022). Hydrochemical appraisal of surface water from a subtropical urban river in southwestern Bangladesh using indices, GIS, and multivariate statistical analysis. Environ. Sci. Pollut. Res. Published online August 10, 2022,1–23. DOI:10.1007/S11356-022-22384-3.
  • 10. Voordouw, G., Menon, P., Pinnock, T., Sharma, M., Shen, Y., Venturelli, A., Voordouw, J. & Sexton A. (2016). Use of homogeneously-sized carbon steel ball bearings to study microbially-influenced corrosion in oil field samples. Front. Microbiol. 7, 351. DOI:10.3389/fmicb.2016.00351.
  • 11. Hu, C.Y., Zhang, J., Xu, B., Lin, Y,L., Zhang, T.Y. & Tian, F.X. (2016). Effect of pipe corrosion product–goethite–on the formation of disinfection by-products during chlorination. Desalin. Water. Treat. 57(2), 553–561. DOI:10.1080/19443994.2014.971877.
  • 12. Madan, S., Madan, R. & Hussain, A. (2022). Evaluation of corrosion and scaling tendency of polyester textile dyeing effluent, Haridwar, Uttarakhand, India. Environ. Sci. Pollut. Res. Published online July 19, 2022,1-9. DOI:10.1007/S11356-022-22057-1.
  • 13. Wright, R.F., Lu, P., Devkota, J., Lu, F., Ziomek-Moroz, M. & Ohodnicki, P.R. (2019). Corrosion sensors for structural health monitoring of oil and natural gas infrastructure: A review. Sensors (Switzerland). 19(18), 3964. DOI:10.3390/s19183964.
  • 14. Bolaji, T.A., Olumayede, E.G. & Ojo, A.M. (2022). Evaluation of corrosion and scaling potentials of oilfield waters in an offshore producing facility, Niger Delta. Water. Sci. Technol. 85(12), 3493–3509. DOI:10.2166/WST.2022.182.
  • 15. Frey, M., Harris, S.G., Holmes, J.M., Nation, D.A., Parsons, S., Tasker, P.A. & Winpenny, R.E. (2000). Elucidating the mode of action of a corrosion inhibitor for iron. Chem - A Eur J. 6(8), 1407–1415. DOI: 10.1002/(SICI)1521-3765(20000417)6:8<1407::AID-CHEM1407>3.0.CO;2-K.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51c0ac5a-bfc8-42ef-9535-63d8b7523f64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.