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The neuro-fuzzy classifier oj seabed type from acoustic echoes was investigated in the
context oj possible reducing the number oj input parameters. The incremental architecture oj
fuzzy neural network classifier (IFNN) was used in the experiment, utilising dual-frequency
echo collection. In particular, the wavelet decomposition oj these hottom echoes was used to
generate input parameters oj IFNN. The Principal Component Analysis (PCA) was subse-
quently appliedjor redundant parameters reduction.

l. INTRODUCTION

Acoustic methods of bottom characterisation have known advantages, as they are non-
invasive and more cost effective than other methods. The methods of so called normai inci-
dence - which use the backseatter data from a single-beam echosounder - have achieved spe-
cial attention, due to their simplicity and versatility. The various normal incidence methods
have their advantages and shortcomings or constraints. In general, the performance of the
methods and their generalisation ability increases concurrently with the number of input pa-
rameters or dimensionality of the input vector space [l], [2]. This feature is specifically char-
acteristic for the class of artificial intelligence methods, and neuro-fuzzy methods in particular
[2].

In such a context, the objective of the paper was to investigate the possibility of reduc-
ing the redundant number of input parameters without decreasing the quality of seafloor clas-
sification from acoustic echoes. This sort of "feasibility study" was carried out using neuro-
fuzzy IFNN structure, that processed the set of data consisting of wavelet coefficients of bot-
tom echoes. The redundancy of the input parameters vector space was reduced by application
of the Principal Component Analysis (PCA).

2. INCREMENT AL FUZZY NEURAL NETWORK CLASSIFIER

Classifier implemented in the experiment described in this paper is based on the funda-
mental structure of the Sugeno fuzzy inference system [3]. The neuro-fuzzy version of this
model (ANFIS - artificial neural network fuzzy inference system) is able to derive the opti-
mai shapes of membership functions and number of fuzzy rules from the given data sets. The
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structure of fuzzy inference subsystem is "hidden" in the neural network, therefore the system
adapts its parameters in the learning process.

The ANFIS was implemented in the multistage incremental architecture IFNN, which
basie structure is depicted in Fig. 1.
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Fig. l. Basic structure of the Sugeno IFNN adopted for a multistage system

Multistage fuzzy reasoning mechanism was explained in detail in [2].

3. WAVELET ANALYSIS

Wavelet analysis represents particular windowing technique with variable-sized regions,
which allows to use the longer time intervals for extracting more precisely low frequency in-
formation, and shorter intervals for high frequency information. Mathematically, the continu-
ous wavelet transform (CWT) of signal x(t) is defined similarly to Fourier transform as a
projection of a signal x on a family of zero-rnean functions derived from an elementary func-
tion (rnother wavelet) by translations and dilations [4], [5]:

C(a,b)= fx(t)lJI(a,b,t)dt, (1)

where: C(a,h )=Ca,b- a set of wavelet coefficients;

lJI(a,b,t) = );-IJI( t :b ) - wavelet function;

a - the variable representing scale;

b - the variable representing position.

By definition, the wavelet transform is more a time-scale than time-frequency rep re-
sentation. However, for wavelets which are well localised around a non-zero frequency fa at a

scale a= l, a time-frequency interpretation is possible due to the formal identity f = j~ .
a

Wavelet Transform demonstrates its usefulness in variety of applications [4] [5]. It seems
to be also well suited and attractive tool for recognition of seabed type from acoustic echoes.
However, its computation is time consuming, so for actual implementation the Discrete
Wavelet Transform (DWT) was used. The discrete version of this transform consists of log2N
stages (levels) for a signal containing N sampIes. In every step, two sets of coefficients are



21

obtained by convolution with a low-pass filter for approximation coefficients and with a high-
pass filter for detailed ones, followed by downsampling. In the following step, the same pro-
cedure is used for approximation coefficients only. This tree algorithm developed by MaJlat
[5] can be implemented very efficient1y and allows a real-time computation during measure-
ment. The DWT tree algorithm was used for calculation of wavelet coefficients froin seabed
echoes acquired by the digital echosounder - see section 4.

Sample results of these computations are presented in Fig. 2 in the form of four sets of
waveJet coefficients, which were obtained for four bottom types (Fig. 2a). The corresponding
echo envelopes for these four bottom types are also show n in Fig. 2b.
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Fig. 2. Discrete Wavelet Transform of bottom echoes collected on 120kHz: a) Wavelet coefficients

set; b) Corresponding echo envelopes of four types of bottom

4. PRINCIPAL COMPONENT ANAL YSIS OF EXPERIMENT AL DAT A

Experimental data was acquired from acoustic surveys carried out in Lake Washington
using a single-bearn digital echosounder DT4000 with two operating frequencies: 38 kHz and
120 kHz. The sampling rate of backscattered bottom echoes was 41.66 kHz. For the experi-
ment, onIy the data obtained from the anchored vessel in the same location for each bottom
type and each frequency was further investigated in order to assure more reliable grandtruth-
ing information.

Pour types of sediments were represented in the collected data, viz.: mud, soft sand,
hard sand and rock.

A set of parameters was extracted from each digitised bottom echo:
l) The sum s of the waveJet coefficients of {h level absolute values Si, where i= 1,2, 00.,8;
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2) The sums of the absolute values of al! wavelet coefficients, S;
3) First wavelet coefficient of third level, C.

Parameter 1st principal component
coefficient

SI 0,3326

S2 -0,0382

S3 0,3147

S4 0,1537

S5 -0,2869

S6 -0,2870

S7 -0,2908

S8 -0,2650

S -0,0581

C -0,3162

Tab. l. First principal components coefficients
for input parameters calculated from
38 kHz echo

a)

Parameter 1stprincipal component
coefficient

SI 0,2834

S2 -0,3012

S3 0,1952

S4 -0,2775

S5 -0,2426

S6 -0,2558

S7 -0,2916

S8 -0,2388

S -0,3000

C -0,2534

Tab. 2. First principal components coefficients
for input parameters calculated from
120 kHz echo

Classified as
True Hard Rock Soft Mud Not
Class Sand Sand known

0%
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b)

Fig. 3. Box diagram (a) and confusion matrix (b) of the testing results after the l" stage of the IFNN
system (the sums of the first level waveIet coefficients at 120 kHz); percentage of echoes COf-

rectly c1assifiedin total is 50.1 %
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Fig. 4. Box diagram (a) and confusion matrix (b) of the testing results after the 2nd stage of the lFNN
system (the sums of the first level wavelet coefficients at 38 kHz); percentage of echoes correctly clas-

sified in total is 96%

In this way, !O wavelet coefficients parameters were extracted for each frequency from
the echo. In total, 20 parameters were extracted as an input parameters for further analysis.
The developed IFNN classifier was trained on a learning set of data and its generalisation
ability was checked on testing data. The 1earning set counted 200 records and testing set had
645 records.

To select, which of mentioned parameters of backscattered echoes from seabed is most
useful in the classification process as the input parameter, the PCA was applied [6). Principal
component analysis was carried out using !O input parameters for each frequency. The results
of PCA are presented in Tab. 1 for 38 kHz and in Tab. 2 for 120 kHz. The analysis shows
that the sums of the wavelet coefficients of the first level wavelet coefficients have the first
principal component of largest value at both frequencies. Therefore, these sums were chosen
for further investigation. In the testing process, the percentage of correctly classified echoes
obtained was 50.1 % after the 15t stage (Fig. 3) and 96% after the 2nd stage (Fig. 4).

5. CONCLUSIONS

The application of a Digital Wavelet Transform of the backscattered echoes for seafloor
cIassification purposes was investigated. The wavelet coefficients obtained from DWT were
conbined with six other echo parameters (energy, amplitude, etc.) by means of PCA. The
PCA reduced the number of input parameters to only one, viz. sum of the first level wavelet
coefficients (for each of two frequencies), that appeared to be sufficient enough for achieving
good classification results.

The accuracy of the developed classification schemes based on the time-frequency appro-
ach using the wavelet coefficients is better in comparison with time-domain methods that use
the echosaunder data, This is due to including both temporal as well as spectral characteristics
of echo features in the classification procedure.

These results show that introducing the proposed multistage system seams to be a prom-
ising solution in seabed classification problems.
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