PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of Stress Concentration on the Contour of Underground Mine Workings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie koncentracji naprężeń na konturze wyrobisk kopalni podziemnych
Języki publikacji
EN
Abstrakty
EN
Kryvyi Rih iron ore basin consists of complex structured ore deposits and is developed by the underground method at depths of over 1000 m. The underground method is used to mine reserves of rich iron ores with a useful component content of more than 59% applying bulk ore and rock caving systems. This leads to significant changes in the stress state of the rock massif. During underground operations, mine workings are strained and in some cases destructed. As a result, enterprises are constantly increasing operating costs for maintaining mine workings, which adversely impacts the cost of production. Industrial research results demonstrate that in most cases workings fail in their upper part which is vaulted in shape. Available methods for determining the state of rocks around mine workings do not fully take into account physical and mechanical properties of the rocks in which the working is located. The developed technique allows determining not only the destructive pressure impacting the workings, but also the angle at which the destructive force acts. This technique differs from the available ones in taking into account not only mining and geological characteristics of the deposit, but also most factors of physical and mechanical properties of rocks. This technique helps to choose a rational place for driving mine workings at the stage of design, thus avoiding significant additional cost for their maintenance.
PL
W kopalni Krzywy Róg występują złoża rudy o złożonej strukturze, wydobywane metodą podziemną z głębokości ponad 1000 m. Stosując systemy zawałowe eksploatuje się złoża bogatych rud żelaza o zawartości składników użytecznych powyżej 59%. Prowadzi to do znacznych zmian stanu naprężeń masywu skalnego. Podczas prac podziemnych wyrobiska kopalniane podlegają naprężęniom, a w niektórych przypadkach ulegają zniszczeniu. W efekcie przedsiębiorstwa stale podwyższają koszty eksploatacji wyrobisk górniczych, co niekorzystnie wpływa na koszty produkcji. Wyniki badań przemysłowych wskazują, że w większości przypadków wyrobiska zawodzą w swojej górnej części. Dostępne metody określania stanu skał wokół wyrobisk górniczych nie uwzględniają w pełni właściwości fizycznych i mechanicznych skał, w których znajduje się wyrobisko. Opracowana technika pozwala na określenie nie tylko ciśnienia destrukcyjnego działającego na wyrobiska, ale również kąta działania siły destrukcyjnej. Technika ta rożni się od dostępnych tym, że uwzględnia nie tylko cechy górniczo-geologiczne złoża, ale także większość czynników właściwości fizykomechanicznych skał. Technika ta pozwala już na etapie projektowania na dobór racjonalnych miejsc prowadzenia wyrobisk górniczych, unikając w ten sposób znacznych dodatkowych kosztów ich utrzymania.
Rocznik
Tom
Strony
69--78
Opis fizyczny
Bibliogr. 48 poz., rys., tab., zdj.
Twórcy
  • Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
  • National University of Water and Environmental Engineering, 11 Soborna Str., Rivne, 33028, Ukraine
  • Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
  • Kryvyi Rih National University, Faculty of Mining and Metallurgy,11 Vitalii Matusevych Str., Kryvyi Rih, 50027, Ukraine
  • Central Ukrainian National Technical University, 8, Prospekt Universytetskyi, Kropyvnytskyi, 25006, Ukraine
Bibliografia
  • 1. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040.
  • 2. Pysmennyi, S., Chukharev, S., Khavalbolot, K., Bondar, I., & Ijilmaa, J. (2021). Enhancement of the technology of mining steep ore bodies applying the “floating” crown. E3S Web of Conferences, 280, 08013. https://doi. org/10.1051/e3sconf/202128008013.
  • 3. Pysmennyi, S., Chukharev, S., Kyelgyenbai, K., Mutambo, V., & Matsui, A. (2022). Iron ore underground mining under the internal overburden dump at the PJSC “Northern GZK”. IOP Conference Series: Earth and Environmental Science, 1049(1), 012008. https://doi.org/10.1088/1755-1315/1049/1/012008.
  • 4. Sobczyk, W., Perny, K.C.I., Sobczyk, E.J. (2021). Assessing the Real Risk of Mining Industry Environmental Impact. Case Study. Inzynieria Mineralnathis, 1 (1), 33–41. https://doi.org/10.29227/IM-2021-01-05.
  • 5. Radwanek-Bąk, B., Sobczyk, W., Sobczyk, E.J. (2020). Support for multiple criteria decisions for mineral deposits valorization and protection. Resources Policy, 68. 101795. https://doi.org/10.1016/j.resourpol.2020.101795.
  • 6. Sobczyk, W. (2015). Sustainable development of Middle East region. Problemy Ekorozwoju – problems of sustainable Development, 10 (2), 51–62.
  • 7. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. (2013). Influence of rock massif stress-strain state on uranium ore breaking technology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 11–16.
  • 8. Stupnik, N., & Kalinichenko, V. (2012). Parameters of shear zone and methods of their conditions control at underground mining of steep-dipping iron ore deposits in Kryvyi Rig basin. Geomechanical Processes During Underground Mining - Proceedings of the School of Underground Mining, 15–17.
  • 9. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B., & Mirchenko, Ye.G. 2013. Prospects of application of TNT-free explosives in ore deposites developed by uderground mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 44–48.
  • 10. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The infuence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8.
  • 11. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area. Sustainability, 13(2), 834. https://doi.org/10.3390/ su13020834.
  • 12. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org10.3390/min11080858.
  • 13. Galayev, N.Z. (1990). Upravleniye sostoyaniyem massiva gornykh porod pri podzemnoy razrabotke rudnykh mestorozhdeniy [Management of the state of the rock mass in the underground mining of ore deposits]. (Moscow: Nedra).
  • 14. Stupnik, M.I., Kalinichenko, V.O., Fedko, M.B., & Kalinichenko, O.V. (2018). Investigation into crown stability at underground leaching of uranium ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 20–25.
  • 15. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, 10, 852591. https://doi.org/10.3389/fenvs.2022.852591.
  • 16. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” Und
  • 17. Stupnik, M., & Kalinichenko, V. (2013). Magnetite quartzite mining is the future of Kryvyi Rig iron ore basin. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 49–52
  • 18. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23-32. https://doi.org/10.17794/rgn.2020.2.3.
  • 19. Stupnik, N.I., Fedko, M.B., Pismennyi, S.V., & Kolosov, V.A. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 21–25.
  • 20. Lyashenko, V., Andreev, B., & Dudar, T. (2022). Substantiation of mining-technical and environmental safety of underground mining of complex-structure ore deposits. Mining of Mineral Deposits, 16(1), 43-51. https://doi. org/10.33271/mining16.01.043.
  • 21. Issayeva, L., Togizov, K., Duczmal-Czernikiewicz, A., Kurmangazhina, M., & Muratkhanov, D. (2022). Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Mining of Mineral Deposits, 16(2), 14-21. https://doi.org/10.33271/mining16.02.014.
  • 22. Takhanov, D., Muratuly, B., Rashid, Z., & Kydrashov, A. (2021). Geomechanics substantiation of pillars development parameters in case of combined mining the contiguous steep ore bodies. Mining of Mineral Deposits, 15(1), 50-58. https://doi.org/10.33271/mining15.01.050.
  • 23. Stupnik, M.I., Kalinichenko, O.V., & Kalinichenko, V.O. (2012). Economic evaluation of risks of possible geomechanical violations of original ground in the fields of mines of Kryvyi rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 126–130.
  • 24. Malakhov, G.M. (1990). Upravleniye gornym davleniyem pri razrabotke rudnykh mestorozhdeniy Krivorozhskogo basseyna [Management of rock pressure in the development of ore deposits of the Krivoy Rog basin]. (Kyiv: Naukova dumka).
  • 25. Pysmenniy, S., Shvager, N., Shepel, O. Kovbyk, K., & Dolgikh O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, 166, 02006. https://doi. org/10.1051/e3sconf/202016602006.
  • 26. Turchaninov, I.A., Iofis, M.A., & Kaspar'yan, Z.Z. (1989). Osnovy mekhaniki gornykh porod [Fundamentals of rock mechanics]. (Leningrad: Nedra).
  • 27. Zorin, A.N., Kolesnikov, V.G., & Minayev, S.P. (1986). Upravleniye sostoyaniyem gornogo massiva. [Managing the state of the mountain range]. (Kyiv: Naukova dumka).
  • 28. Morkun, V., & Morkun, N. (2018). Estimation of the crushed ore particles density in the pulp flow based on the dynamic effects of high-energy ultrasound. Archives of Acoustics, 43(1), 61–67.
  • 29. Golik, V., Komashchenko, V., Morkun, V., & Zaalishvili, V. (2015). Enhancement of lost ore production efficiency by usage of canopies. Metallurgical and Mining Industry, 7(4), 325–329.
  • 30. Morkun, V., Morkun, N., & Tron, V. (2015). Distributed control of ore beneficiation interrelated processes under parametric uncertainty. Metallurgical and Mining Industry, 8(7), 18–21.
  • 31. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V. & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 37–41. https://doi.org/10.29202/nvngu/2019-1/20.
  • 32. Stupnik, M., Kalinichenko, V., Fedko, M., Kalinichenko, O., Pukhalskyi, V., & Kryvokhin, B. (2019). Investigation of the dust formation process when hoisting the uranium ores with a bucket. Mining of Mineral Deposits, 13(3), 96–103. https://doi.org/10.33271/mining13.03.096.
  • 33. Golik, V., Komashchenko, V., Morkun, V., & Irina, G. (2015). Improving the effectiveness of explosive breaking on the bade of new methods of borehole charges initiation in quarries. Metallurgical and Mining Industry, 7(7), 383–387.
  • 34. Kyelgyenbai K., Pysmennyi S., Chukharev S., Purev B., & Jambaa I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, (280), 08001. https://doi.org/10.1051/e3sconf/202128008001.
  • 35. Stupnik, N.I., Fedko, M.B., Kolosov, V.A., & Pismennyy S.V. (2014). Razrabotka rekomendatsiy po vyboru tipa krepleniya gornykh vyrabotok i sopryazheniy v uslovii uranovykh shakht GP "VOSTGOK". Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 21–25.
  • 36. Kalinichenko, V., Dolgikh, O., Dolgikh, L., & Pysmennyi, S. (2020). Choosing a camera for mine surveying of mining enterprise facilities using unmanned aerial vehicles. Mining of Mineral Deposits, 14(4), 31-39. https://doi. org/10.33271/mining14.04.031.
  • 37. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geometrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029.
  • 38. Kalinichenko, V., Dolgikh, O., & Dolgikh, L. (2019). Digital survey in studying open pit wall deformations. E3S Web of Conferences, 123, 01047.
  • 39. Kalinichenko, O., Fedko, M., Kushnerov, I., & Hryshchenko, M. (2019). Muck drawing by inclined two-dimensional flow. E3S Web of Conferences, 123, 01015.
  • 40. Stupnik, M.I., Kalinichenko, O.V., Kalinichenko, V.O. 2012. Technical and economic study of self-propelled machinery application expediency in mines of krivorozhsky bassin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 39–42.
  • 41. Panchenko, V., Sobko, B., Lotous, V., Vinivitin, D., & Shabatura, V. (2021). Openwork scheduling for steep-grade iron-ore deposits with the help of near-vertical layers. Mining of Mineral Deposits, 15(1), 87-95. https://doi. org/10.33271/mining15.01.087.
  • 42. Zeylik, B., Arshamov, Y., Baratov, R., & Bekbotayeva, A. (2021). New technology for mineral deposits prediction to identify prospective areas in the Zhezkazgan ore region. Mining of Mineral Deposits, 15(2), 134-142. https://doi. org/10.33271/mining15.02.134.
  • 43. Morkun, V., Morkun, N., & Tron, V. (2015). Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation. Metallurgical and Mining Industry, 7(7), 16–19.
  • 44. Stupnik, M., Kalinichenko, O., Kalinichenko, V., Pysmennyi, S. & Morhun, O. (2018). Choice and substantiation of stable crown shapes in deep-level iron ore mining. Mining of Mineral Deposits, 12(4), 56–62. https://doi. org/10.15407/mining12.04.056.
  • 45. Stupnik, N., Kalinichenko, V., Pismennij, S. & Kalinichenko, Е. (2015). Features of underlying levels opening at “ArsellorMittal Kryvyic Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39–44.
  • 46. Rysbekov, K., Bitimbayev, M., Akhmetkanov, D., Yelemessov, K., Barmenshinova, M., Toktarov, A., & Baskanbayeva, D. (2022). Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Mining of Mineral Deposits, 16(2), 64-72. https://doi.org/10.33271/mining16.02.064.
  • 47. Stupnik, N.I., Fedko, M.B., Kolosov, V.A., & Pismennyy S.V. (2014). Development of recommendations for choosing excavation support types and junctions for uranium mines of state-owned enterprise skhidhzk. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 21–25.
  • 48. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine. Mining of Mineral Deposits, 16(2). 33–41. https://doi.org/10.33271/mining16.02.033.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51ba59b0-d96f-468d-b619-9fee3fd4a62a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.