PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and cytological study of collagen/nano-hydroxyapatite/graphene oxide composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomimetic mineralized composite scaffolds are widely used as natural bone substitute materials in tissue engineering by inducing and assembling bonelike apatite. In this study, the single lamellar structure of graphene oxide (GO) powder was prepared via an improved Hummers’ method. Methods: To better mimic natural bone, the collagen (COL)/Nano-hydroxyapatite (nHA)/graphene oxide (GO) composite material was prepared by simulated body fluid (SBF) method using COL/GO as a matrix template. Hydroxyapatite (HA) with calcium ion deficiency was achieved via biomimetic mineralization, and it had properties closer to those of natural bone than pure HA has. Results: The mineralized COL/nHA/GO composites exhibited loose porous structures, and the connectivity of the holes was good and thus beneficial to the exchange of nutrients and excreted metabolites. Conculsions: Antibacterial and MTT experiment confirmed that the COL/nHA/GO composite material had excellent antibacterial property and biocompatibility. Hence, these results strongly suggested the mineralized COL/nHA/GO composite is a good candidate biomaterial to be applied in bone tissue engineering.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
  • Bote Biotech. Co., Ltd. Fujian, China
autor
  • Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
autor
  • Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
autor
  • Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
autor
  • Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
autor
  • Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, China
autor
  • Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, China
Bibliografia
  • [1] ALVES N.M., LEONOR I.B., AZEVEDO H.S., REIS R.L., MANO J.F., Designing Biomaterials Based on Biomineralization of Bone, J. Mater. Chem., 2010, 20(15), 2911–2921.
  • [2] COELHO P.G., TAKAYAMA T., YOO D., JIMBO R., Nanometerscale features on micrometer-scale surface texturing: A bone histological, gene expression, and nanomechanical study, Bone, 2014, 65(4), 25–32.
  • [3] DREYER D.R., PARK S., BIELAWSKI C.W., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, 39(1), 228–240
  • [4] DREYER D.R., PARK S., BIELAWSKI C.W., DIMIEV A.M., The chemistry of graphene oxide, Chem. Soc. Rev., 2010, 39(1), 228–240.
  • [5] ENGELHARDT E.M., MICOL L.A., HOUIS S., WURM F.M., HILBORN J., HUBBELL J.A., FREY P., A collagen-poly(lactic acid-co-ε-caprolactone) hybrid scaffold for bladder tissue regeneration, Biomaterials, 2011, 32(16), 3969–3976.
  • [6] FAN H., WANG L., ZHAO K., LI N., SHI Z.J., GE Z.G., JIN Z.X., Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites, Biomacromolecules, 2010, 11(9), 2345–2351.
  • [7] HUMMERS W.S., OFFEMAN R.E., Preparation of graphitic oxide-journal of the american chemical society (ACS publications), Am. Chem. Soc., 2015, 9, 8165–8175.
  • [8] HU W., PENG C., LUO W., LV M., LI X.M., LI D., HUANG Q., FAN C.H., Graphene-based antibacterial paper, Acs. Nano., 2010, 4(7), 4317–4323.
  • [9] JOHN C., The structure and mechanics of bone, J. Mater. Sci., 2012, 47(1), 41–54.
  • [10] KIM H., CHE L., HA Y., Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles, Mater Sci. Eng. C., 2014, 40, 324–335.
  • [11] KOLK A., HANDSCHEL J., DRESCHER W., ROTHAMEL D., KLOSS F., BLESSMANN M., HEILAND M., WOLFF K.D., SMEETS R., Current trends and future perspectives of bone substitute materials: from space holders to innovative biomaterials, J. Cranio. Maxill. Surg., 2012, 40(8), 706–718.
  • [12] LI N., WANG Z.Y., ZHAO Z.Y., SHI Z.J., GU Z.N., XU S.K., Large scale synthesis of N-doped multi-layered grapheme sheets by simple arc-discharge method, Carbon, 2010, 48, 255–259.
  • [13] LIANG J., HUANG Y., ZHANG L., WANG Y., MA Y.F., GUO T.Y., CHEN Y.S., Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Adv. Funct. Mater, 2009, 19(14), 2297–2302.
  • [14] LUO Y., SHEN H., FANG Y., CAO Y.H., HUANG J., ZHANG M.X., DAI J.W., SHI X.Y., ZHANG Z.J., Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats, Acs. Appl. Mater Inter., 2015, 7(11), 6331–6339.
  • [15] MOROZOWICH N.L., NICHOL J.L., ALLCOCK H.R., Investigation of Apatite Mineralization on Antioxidant Polyphosphazenes for Bone Tissue Engineering, Chem. Mater, 2012, 24(17), 3500–3509.
  • [16] MAUFFREY C., BARLOW B.T., SMITH W., Management of segmental bone defects, J. Am. Acad. Orthop. Sur., 2015, 23(3), 143–153.
  • [17] MIN L., QING H., FAN C.H., FANG H.P., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nat. NanoTechnol., 2013, 8(8), 594–601.
  • [18] OYER A.J., CARRILLO J.Y., HIRE C.C., SCHNIEPP H.C., ASANDEI A.D., DOBRYNIN A.V., ADAMSON D.H., Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent, J. Am. Chem. Soc., 2012, 134(11), 5018–5021.
  • [19] PANDA N., BISSOYI A., PRAMANIK K., BISWASET A., Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties, Mater Sci. Eng. C., 2015, 48, 521–532.
  • [20] ROCHEFORT G.Y., PALLU S., BENHAMOU C.L., Osteocyte: the unrecognized side of bone tissue, Osteoporosis Int., 2010, 21(9), 1457–1469.
  • [21] SOWMYA S., BUMGARDENER J.D., CHENNAZHI K.P., NAIRET S.V., Role of nanostructured biopolymers and bioceramics in enameldentin and periodontal tissue regeneration, Prog. Polym. Sci., 2013, 38(10–11), 1748–1772.
  • [22] SHRIVATS A.R., MCDERMOTT M.C., HOLLINGER J.O., Bone tissue engineering: state of the union, Drug. Discov. Today, 2014, 19(6), 781–786.
  • [23] SUK J.W., PINER R.D., AN J., RUOFF R.S., Mechanical Properties of Monolayer Graphene Oxide. Acs. Nano., 2010, 4(11), 6557–6564.
  • [24] SHEN Y., YANG S.Z., LIU J.L., XU H.Z., SHI Z.L., LIN Z.Q., YING X.Z., GUO P., LIN T., YAN S.G., Engineering Scaffolds Integrated with Calcium Sulfate and Oyster Shell for Enhanced Bone Tissue Regeneration, Acs. Appl. Mater Inter., 2014, 6(15), 12177–12188.
  • [25] TASLI P.N., AYDIN S., YALVAC M.E., ŞAHIN F., Bmp 2 and Bmp 7 Induce Odonto-And Osteogenesis of Human Tooth Germ Stem Cells, Appl. Biochem. Biotech., 2014, 172(6), 3016–3025.
  • [26] WANG X., GAN H., SUN T., Chiral Design for Polymeric Biointerface: The Influence of Surface Chirality on Protein Adsorption, Adv. Funct. Mater, 2011, 21(17), 3276–3281.
  • [27] WANG K., RUAN J., SONG H., ZHANG J.L., YAN W., GUO S.W., Biocompatibility of graphene oxide, Nanoscale Res. Lett., 2011, 6(1), 1–8.
  • [28] WANG J.H., YANG Q., CHENG N.M., TAO X.J., ZHANG Z.Z., SUN X.M., ZHANG Q.Q., Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair, Mater Sci. Eng. C Mater Biol. Appl., 2016, 61, 705–711.
  • [29] XIA Z.M., WEI W., WURM F.M., HILBORN J., HUBBELL J.A., FREY P., Biomimetic fabrication of collagen-apatite scaffolds for bone tissue regeneration, J. Biomater. Tissue Eng., 2013, 3(4), 369–384.
  • [30] YANG G.H., KIM M., KIM G., A hybrid PCL/collagen scaffold consisting of solid freeform-fabricated struts and EHD-direct--jetprocessed fibrous threads for tissue regeneration, J. Colloid Interface Sci., 2015, 450, 159–167.
  • [31] Y, T., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nature Nanotechnology, 2013, 8(8), 594–601.
  • [32] ZHANG X., YIN J., PENG C., HU W.Q., ZHU Z.Y. W. X., FAN C.H., HUANG Q., Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration, Carbon, 2011, 49(3), 986–995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51b796d2-135c-43cc-88ac-9eb30d76d3f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.