Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, we revealed the impact of pumping scheme, fibre length, pumping power, and the reflectivity of the output fibre Bragg grating on the performance of a Tm³⁺-doped fibre laser (TDFL) operating at a wavelength of 1.72 μm. Numerical simulations enabled the optimization of output power and the reduction of losses due to reabsorption, as well as amplified spontaneous emission (ASE) around 1820 nm. The Tm³⁺-doped fibre (TDF) was bi-directionally pumped at 1570 nm to enhance pump absorption. The simulations suggest that a maximum power of 5.96 W at 1.72 μm and a slope efficiency of 64% are achievable using a Tm³⁺-doped silica fibre with a bi-directional pump of 4 W forward and 6 W backward.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e151988
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- LPTHE, Department of Physics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
autor
- LPTHE, Department of Physics, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
autor
- STIC, Department of Physics, Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
Bibliografia
- [1] Sharma, U., Chang, E. W. & Yun, S. H. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth. Opt. Express 16, 19712-19723 (2008). https://doi.org/10.1364/OE.16.019712.
- [2] Yamanaka, M., Teranishi, T., Kawagoe, H. & Nishizawa, N. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deeptissue imaging. Proc. SPIE. 10053, 100631X (2017). https://doi.org/10.1117/12.2254772.
- [3] Chong, S. P. et al. Noninvasive, in vivo imaging of subcortical mouse brain regions with 1.7 µm optical coherence tomography. Opt. Lett. 40, 4911-4914 (2015). https://doi.org/10.1364/OL.40.004911.
- [4] Wu, M., Jansen, K., van der Steen, A. F. & van Soest, G. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomed. Opt. Express 6, 3276-3286 (2015). https://doi.org/10.1364/BOE.6.003276.
- [5] Schowengerdt, R. A. Remote Sensing: Models and Methods for Image Processing. (Elsevier, 2006).
- [6] Emami, S. D., Dashtabi, M. M., Lee, H. J., Arabanian, A. S. & Rashid, H. A. A. 1700 nm and 1800 nm band tunable thulium doped mode-locked fiber lasers. Sci. Rep. 7, 12747 (2017). https://doi.org/10.1038/s41598-017-13200-x.
- [7] Mingareev, I. et al. Welding of polymers using a 2 µm thulium fiber laser. Opt. Laser Technol. 44, 2095-2099 (2012). https://doi.org/10.1016/j.optlastec.2012.03.020.
- [8] Anselmo, C., Welschinger, J.-Y., Cariou, J.-P., Miffre, A. & Rairoux, P. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration. Opt. Express 24, 12588-12599 (2016). https://doi.org/10.1364/OE.24.012588.
- [9] Chambers, P., Austin, E. A. & Dakin, J. P. Theoretical analysis of a methane gas detection system, using the complementary source modulation method of correlation spectroscopy. Meas. Sci. Technol. 15, 1629 (2004). https://doi.org/10.1088/0957-0233/15/8/034.
- [10] Dong, J. et al. High order cascaded raman random fiber laser with high spectral purity. Opt. Express 26, 5275-5280 (2018). https://doi.org/10.1364/OE.26.005275.
- [11] Ma, R., Quan, X., Zhao, T., Fan, D. Y. & Liu, J. Robust 1.69 µm random fiber laser with high spectral purity based on ordinary fibers. J. Light. Technol. 40, 3942-3946 (2022). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-40-12-3942.
- [12] Zhang, Y. et al. Tunable random raman fiber laser at 1.7 µm region with high spectral purity. Opt. Express 27, 28800-28807 (2019). https://doi.org/10.1364/OE.27.028800.
- [13] Pei,W., Li, H., Huang,W., Wang, M. & Wang, Z. Pulsed fiber laser oscillator at 1.7 µm by stimulated raman scattering in h 2-filled hollow-core photonic crystal fibers. Opt. Express 29, 33915-33925 (2021). https://doi.org/10.1364/OE.440461.
- [14] Zhang, L. et al. 1.7- µm tm-doped fiber laser intracavity-pumped by an erbium/ytterbium-codoped fiber laser. Opt. Express 29, 25280-25289 (2021). https://doi.org/10.1364/OE.432898.
- [15] Agger, S., Povlsen, J. H. & Varming, P. Single-frequency thulium-doped distributed-feedback fiber laser. Opt. Lett. 29, 1503-1505 (2004). https://doi.org/10.1364/OL.29.001503.
- [16] Majewski, M. R. et al. Emission beyond 4 µm and mid-infrared lasing in a dysprosium-doped indium fluoride (inf 3) fiber. Opt. Lett. 43, 1926-1929 (2018). https://doi.org/10.1364/OL.43.001926.
- [17] Majewski, M. R., Woodward, R. I. & Jackson, S. D. Dysprosium mid-infrared lasers: current status and future prospects. Laser Photonics Rev. 14, 1900195 (2020). https://doi.org/10.1002/lpor.201900195.
- [18] Tang, Z. et al. Study of mid-infrared laser action in chalcogenide rare earth doped glass with dy 3+, pr 3+ and tb 3+. Opt. Mater. Express 2, 1632-1640 (2012). https://doi.org/10.1364/OME.2.001632.
- [19] Burns, M. D. et al. 47w continuous-wave 1726 nm thulium fiber laser core-pumped by an erbium fiber laser. Opt. Lett. 44, 5230-5233 (2019). https://doi.org/10.1364/OL.44.005230.
- [20] Daniel, J., Simakov, N., Tokurakawa, M., Ibsen, M. & Clarkson, W. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band. Opt. Express 23, 18269-18276 (2015). https://doi.org/10.1364/OE.23.018269.
- [21] Zhang, L. et al. High-efficiency thulium-doped fiber laser at 1.7 µm. Opt. Laser Technol. 152, 108180 (2022). https://doi.org/10.1016/j.optlastec.2022.108180.
- [22] Khamis, M. & Ennser, K. Enhancement on the generation of amplified spontaneous emission in thulium-doped silica fiber at 2 µm. Opt. Commun. 403, 127-132 (2017). https://doi.org/10.1016/j.optcom.2017.07.032.
- [23] Romano, C., Tench, R. E. & Delavaux, J.-M. Simulation of 2 µm single clad thulium-doped silica fiber amplifiers by characterization of the 3 f 4-3 h 6 transition. Opt. Express 26, 26080-26092 (2018). https://doi.org/10.1364/OE.26.026080.
- [24] Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6, 423-431 (2012). https://doi.org/10.1038/nphoton.2012.149.
- [25] Shang, L. Comparative study of the output characteristics of ytterbium-doped double-clad fiber lasers with different pump schemes. Optik 122, 1899-1902 (2011). https://doi.org/10.1016/j.ijleo.2010.11.021.
- [26] Ren, Y., Cao, J., Du, S. & Chen, J. Numerical study on the continuous-wave yb-doped fiber amplifiers operating near 980 nm. Optik 161, 118-128 (2018). https://doi.org/10.1016/j.ijleo.2018.02.006.
- [27] Peterka, P., Faure, B., Blanc, W., Karasek, M. & Dussardier, B. Theoretical modelling of s-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron. 36, 201-212 (2004). https://doi.org/10.1023/B:OQEL.0000015640.82309.7d.
- [28] Jackson, S. D. & King, T. A. Theoretical modeling of tmdoped silica fiber lasers. J. Light. Technol. 17, 948 (1999). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-17-5-948.
- [29] Zhang, L. et al. Efficient multi-watt 1720 nm ring-cavity tm-doped fiber laser. Opt. Express 28, 37910-37918 (2020). https://doi.org/10.1364/OE.411671.
- [30] Peterka, P., Kasik, I., Dhar, A., Dussardier, B. & Blanc, W. Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3 h 4 level lifetime. Opt. Express 19, 2773-2781 (2011). https://doi.org/10.1364/OE.19.002773.
- [31] Cheng, H., Lin, W., Zhang, Y., Jiang, M. & Luo, W. Numerical insights into the pulse instability in a ghz repetition-rate thulium-doped fiber laser. J. Light. Technol. 39, 1464-1470 (2021). https://doi.org//10.1109/jlt.2020.3034397.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51b34c6d-a345-4191-b36b-084de5a06daa