PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Starch plasticization with choline dihydrogencitrate-based deep eutectic system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-component deep eutectic solvents (DES) based on choline dihydrogencitrate and glycerol or urea were tested as starch plasticizers. Thermal analysis techniques were applied to characterize the properties of starch/DES systems. The X-ray diffractometry measurements revealed a significant decrease in crystallinity indicating that used DES exhibited the ability to penetrate the ordered regions of potato starch, which is a necessary feature of a true plasticizer. However, the differential scanning calorimetry and dynamic thermal analysis results surprisingly showed an increase of Tg of starch materials indicating chemical crosslinking at elevated temperature. The eutectic solvents based on choline dihydrogencitrate could act as a plasticizer and a simultaneously crosslinking agent.
Rocznik
Strony
53--59
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials, ul. Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Sekharan, T.R., Chandira, R.M., Tamilvanan, S., Rajesh, S.C. & Venkateswarlu, B.S. (2022). Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Res. Appl. Chem. 12, 847–860. DOI: 10.33263/BRIAC121.847860.
  • 2. Migliorati, V. & D'Angelo, P. (2021). Deep eutectic solvents: A structural point of view on the role of the anion. Chem. Phys. Lett. 777. DOI: 10.1016/j.cplett.2021.138702.
  • 3. Tan, Y.T., Chua, A.S.M. & Ngoh, G.C. (2020). Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products – A review. Biores. Technol. 297. DOI: 0.1016/j.biortech.2019.122522.
  • 4. Colombo Dugoni, G., Mezzetta, A., Guazzelli, L., Chiappe, C., Ferro, M & Mele, A. (2020). Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chem. 22, 8680–8691. DOI: 10.1039/D0GC03375H.
  • 5. Hossain, M.A., Rahaman, M.S., Yelle, D., Shang, H, Sun, Z., Renneckar, S., Dong, J., Tulaphol, S. & Sathitsuksanoh. (2021). Effects of polyol-based deep eutectic solvents on the efficiency of rice straw enzymatic hydrolysis. Ind. Crops Prod. 167. DOI: 10.1016/j.indcrop.2021.113480.
  • 6. Liu, Y. Xiaojie, Z., Shunhui, T., Lei, H., Xiaodong, Z. & Xiaoqing, Lin. (2021) Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renew. Energy 177, 259–267. DOI: 10.1016/j.renene.2021.05.131.
  • 7. Xie, F., Liu, W.C., Liu, P., Wang, J., Halley, P.J. & Yu, L. (2010). Starch thermal transitions comparatively studied by DSC and MTDSC. Starch – Stärke 62, 350–357 (2010). DOI: 10.1002/star.200900258.
  • 8. Jiang, Q., Gao, W., Li, X., Liu, Z., Huang, L. & Xiao, P. (2011). Synthesis and properties of carboxymethyl Pueraria thomsonii Benth. starch. Starch – Stärke 63, 692–699. DOI: 10.1002/star.201100047.
  • 9. Yanli, W., Wenyuan, G. & Xia, L. (2009). Carboxymethyl Chinese yam starch: synthesis, characterization, and influence of reaction parameters. Carbohydr. Res. 344, 1764–1769. DOI: 10.1016/j.carres.2009.06.014.
  • 10. Spychaj, T., Wilpiszewska, K. & Zdanowicz, M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch/Staerke 65, 22–33. DOI: 10.1002/star.201200159.
  • 11. Pushpadass, H.A., Marx, D.B. & Hanna, M.A. (2008). Effects of Extrusion Temperature and Plasticizers on the Physical and Functional Properties of Starch Films. Starch – Stärke 60, 527–538. DOI: 10.1002/star.201200159.
  • 12. van Soest, J.J.G., Tournois, H., de Wit, D. & Vliegenthart, J.F.G. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 279, 201–214. DOI: 10.1016/0008-6215(95)00270-7.
  • 13. Immergut, E.H. & Mark, H.F. (1965). Principles of Plasticization. Adv. Chem. 48, 1–26. DOI: 10.1021/ba-1965-0048.ch001.
  • 14. Zdanowicz, M. & Spychaj, T. (2011). Ionic liquids as starch plasticizers or solvents. Polimery/Polymers 56, 861–864. DOI: 10.14314/polimery.2011.861.
  • 15. Zhang, Y. & Geng, X. (2020). Principle of biopolymer plasticization. Book chapter in Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications 1–19, Elsevier. DOI: 10.1016/B978-0-12-818795-1.00001-0.
  • 16. Zdanowicz, M., Jędrzejewski, R. & Pilawka, R. (2019). Deep eutectic solvents as simultaneous plasticizing and cross-linking agents for starch. Int. J. Biol. Macromol. 129, 1040–1046. DOI: 10.1016/j.ijbiomac.2019.02.103.
  • 17. Zdanowicz, M. & Johansson, C. (2016). Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohydr. Polym. 151, 103–112. DOI: 10.1016/j.carbpol.2016.05.061.
  • 18. Warren, F.J., Gidley, M.J. & Flanagan, B.M. (2016). Infrared spectroscopy as a tool to characterise starch ordered structure – A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym. 139, 35–42. DOI: 10.1016/j.carbpol.2015.11.066.
  • 19. Lopez-Rubio, A., Flanagan, B.M., Gilbert, E.P. & Gidley, M.J. (2008). A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers 89, 761–768. DOI: 10.1002/bip.21005.
  • 20. Gamarano, D. de S., Pereira, I.M., da Silva, M.C., Mottin, A.C. & Ayres, E. (2020). Crystal structure transformations in extruded starch plasticized with glycerol and urea. Polym. Bull. 77, 4971–4992. DOI: 10.1007/s00289-019-02999-2.
  • 21. Zobel, H.F. (1988). Starch Crystal Transformations and Their Industrial Importance. Starch – Stärke 40, 1–7. DOI: 10.1002/star.19880400102.
  • 22. Zuo, Y., Gu, J., Tan, H. & Zhang, Y. (2015). Thermoplastic starch prepared with different plasticizers: Relation between degree of plasticization and properties. J. Wuhan Univ. Technol. Mater. Sci. Ed. 30, 423–428. DOI: 10.1007/s11595-015-1164-z.
  • 23. Spychaj, T., Zdanowicz, M., Kujawa, J. & Schmidt, B. (2013). Carboxymethyl starch with high degree of substitution: synthesis, properties and application. Polimery 58, 503–511. DOI: 0.14314/polimery.2013.503.
  • 24. Zdanowicz, M. (2020). Starch treatment with deep eutectic solvents, ionic liquids and glycerol. A comparative study. Carbohydr. Polym. 229, 115574. DOI: 10.1016/j.carbpol.2019.115574.
  • 25. Simeonov, S.P. & Afonso, C.A.M. (2016). Basicity and stability of urea deep eutectic mixtures. RSC Adv. 6, 5485–5490. DOI: 10.1039/c5ra24558c.
  • 26. Ghanbarzadeh, B., Almasi, H. & Entezami, A.A. (2011). mproving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind. Crops Prod. 33, 229–235. DOI: 10.1016/j.ind-crop.2010.10.016.
  • 27. Kapelko-Zeberska, M., Buksa, K., Szumny, A., Zieba, T. & Gryszkin, A. (2016). Analysis of molecular structure of starch citrate obtained by a well-stablished method. LWT 69. DOI: 10.1016/j.indcrop.2010.10.016.
  • 28. Heydari A., Alemzadeh, I. & Vossoughi, M. (2013). Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mat. Des. 50, 954–961. DOI: 10.1016/j.matdes.2013.03.084.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51b2d36d-7fee-41e8-a0b4-c5815d4d2587
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.