Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study explores the incorporation of sage (Salvia officinalis) as a bio-based filler in flexible polyurethane foams (FPUFs). Sage was added to FPUFs in varying concentrations (5, 10, and 15 wt.%) to examine its influence on the foaming process, microstructure, density, water absorption, and compression behavior. Results revealed that sage delayed the foaming reaction, reduced exothermic reaction temperatures, and enhanced foam expansion. Microstructural analysis showed finer cell structures and denser foam matrices with sage incorporation. Foam filled with 5 wt.% of sage exhibited reduced compression resistance; however, increasing the filler concentration led to improvements in both compression resistance and density. Sage also increased water absorption due to its hygroscopic nature, though this effect plateaued at higher concentrations. These findings demonstrate the potential of sage as a sustainable additive to produce high-performance FPUFs suitable for various industrial applications.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
353--361
Opis fizyczny
Bibliogr. 19 poz., fig.
Twórcy
autor
- Department of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
autor
- Department of Theoretical and Applied Mechanics, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
- 1. Ates M., Karadag S., Akdogan Eker A., Eker B. Polyurethane foam materials and their industrial applications. Polymer International. 2022; 71(10): 1157–1163. https://doi.org/10.1002/pi.6441.
- 2. Zhang M., Jeong S., Cho W., Ryu J., Zhang B., Crovella P., Ragauskas A.J., Wie J.J., Yoo C.G. Green co-solvent-assisted one-pot synthesis of high-performance flexible lignin polyurethane foam. Chemical Engineering Journal. 2024; 499: 156142. https://doi.org/10.1016/j.cej.2024.156142.
- 3. Jiang Q., Li P., Liu Y., Zhu P. Green flame-retardant flexible polyurethane foam based on polyphenol–iron–phytic acid network to improve the fire safety. Composites Part B: Engineering. 2022; 239: 109958. https://doi.org/10.1016/j.compositesb.2022.109958.
- 4. Liu Q., Gao S., Zhao Y., Tao W., Yu X., Zhi M. Review of layer-by-layer self-assembly technology for fire protection of flexible polyurethane foam. Journal of Materials Science. 2021; 56: 9605–9643. https://doi.org/10.1007/s10853-021-05904-3.
- 5. Krebs M., Sassenhagen J., Hubel R. Novel technology to influence hardness of flexible polyurethane foams. Evonik Industries AG, Goldschmidtstr. 100, 45127 Essen, Germany.
- 6. Izarra I., Borreguero A.M., Garrido I., Rodríguez J.F., Carmona M. Comparison of flexible polyurethane foams properties from different polymer polyether polyols. Polymer Testing. 2021; 100: 107268. https://doi.org/10.1016/j.polymertesting.2021.107268.
- 7. Maamoun A., El-Wakil A., El-Basheer T.M. Enhancement of the mechanical and acoustical properties of flexible polyurethane foam/waste seashell composites for industrial applications. Journal of Cellular Plastics. 2022; 58(4): 645–672. https://doi.org/10.1177/0021955X221088392.
- 8.Onwuka C.O., Anekwe O.J., Ogudo M.C., Chris-Okafor P.U. Impact of mixed fillers on the physico-mechanical properties of flexible polyether foam. Organic Polymer Material Research. 2021; 3(1): 17–23. https://doi.org/10.30564/opmr.v3i1.3604.
- 9. Ajeer S., Mohammad Mazood M., Riyaz Khan A., Kursheed Sulaiha J.N., Shamshath Begum S., Samui A.B. Characterization studies of Sepia officinalis bone powder’s synergistic effect with aluminum hydroxide in the improvement of flame retardancy in flexible polyurethane foam. Materials Today: Proceedings. 2024. https://doi.org/10.1016/j.matpr.2024.05.129.
- 10. Jaiswal H., Gopalasamudram M.N., Maitra J. Improvisation in wicking property of flexible polyurethane foams by adding bamboo and gelatin fillers. Brazilian Journal of Development. 2024; 10(1): 1143–1156. https://doi.org/10.34117/bjdv10n1-075.
- 11. Ghasemi S., Amini E.N., Tajvidi M., Kiziltas A., Mielewski D.F., Gardner D.J. Flexible polyurethane foams reinforced with organic and inorganic nanofillers. Journal of Applied Polymer Science. 2021; 138(10). https://doi.org/10.1002/app.49983.
- 12. Bartczak P., Ejm W., Bacik O., Przybylska-Balcerek A., Borysiak S. Camelina sativa (L.) Crantz straw and pomace as a green filler for integral skin polyurethane foam. Industrial Crops and Products. 2024; 222(4): 119931. https://doi.org/10.1016/j.indcrop.2024.119931.
- 13. Husainie S.M., Khattak S.U., Robinson J., Naguib H.E. A comparative study on the mechanical properties of different natural fiber reinforced free-rise polyurethane foam composites. Industrial & Engineering Chemistry Research. 2020; 59(50): 21745–21755. https://doi.org/10.1021/acs.iecr.0c04006.
- 14. Paciorek-Sadowska J., Borowicz M., Isbrandt M. Evaluation of the effect of waste from agricultural production on the properties of flexible polyurethane foams. Polymers. 2023; 15: 3529. https://doi.org/10.3390/polym15173529.
- 15. Mokhtari R., Kazemi Fard M., Rezaei M., Moftakharzadeh S.A., Mohseni A. Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme–sage mixture extracts. Journal of Food Quality. 2023; 2023: 1–9. https://doi.org/10.1155/2023/2602454.
- 16. Zaccardelli M., Pane C., Caputo M., Durazzo A., Lucarini M., Silva A.M., Severino P., Souto E.B., Santini A., De Feo V. Sage species case study on a spontaneous Mediterranean plant to control phytopathogenic fungi and bacteria. Forests. 2020; 11: 704. https://doi.org/10.3390/f11060704.
- 17. Członka S., Kairytė A., Miedzińska K., Strąkowska A., Adamus-Włodarczyk A. Mechanically strong polyurethane composites reinforced with montmorillonite-modified sage filler (Salvia officinalis L.). International Journal of Molecular Sciences. 2021; 22: 3744. https://doi.org/10.3390/ijms22073744.
- 18. Kapp R.W. Isocyanates. In: Wexler P., ed. Encyclopedia of Toxicology, 4th ed.; Academic Press, 2024: 663–694. https://doi.org/10.1016/B978-0-12-824315-2.00294-3.
- 19. Bernardini J., Licursi D., Anguillesi I., Cinelli P., Coltelli M., Antonetti C., Venezia A., Galletti A., Lazzeri A. Exploitation of Arundo donax L. hydrolysis residue for the green synthesis of flexible polyurethane foams. BioResources. 2017; 12: 3630–3655. https://doi.org/10.15376/biores.12.2.3630-3655.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51b2a3dc-be5e-4b0d-960d-d8da008ef8c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.