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1. Introduction 
 
Quantum computing is known to accelerate  
the process of computation even exponentially  
in time (see e.g. [2], [3], [4]). However,  
the quantum computer is in its early stage of 
construction. On the other hand, the idea  
of quantum computation gave birth to a variety 
of quantum-inspired algorithms (see e.g. [6]). 

Quantum-inspired algorithms refer to  
the model of quantum register. It needs, though, 
exponentially many variables with the number of 
qubits to define its state. This would be too 
much for a classical computer to model it 
efficiently. One may ask whether the amount of 
data necessary to model could be reduced while 
still giving a good approximation of the original 
quantum state. The answer must consist of two 
points. First, it must give some measure of such 
approximation. Second, it must give some 
algorithm of “reduction”. This paper presents 
both. The reduction consists in splitting  
the original register into two, thus losing some 
information due to the possible disentanglement, 
but decreasing significantly the number of 
variables necessary to define its state. 
 
2. Savings on splitting a quantum 

register 
 
Assume we have a quantum register of 𝑛 qubits. 
Its state is expressed with 𝑁 = 2𝑛  
quantum probability amplitudes, say 
𝛼0, 𝛼1, …, 𝛼𝑁−1 ∈ ℂ: 
 

�|𝝋�⟩ = 𝛼0�|00 … 00�⟩ + 𝛼1�|00 … 01�⟩ + ⋯
+ 𝛼𝑁−1�|11 … 11�⟩, 

(1) 
holding also: 
 

|𝛼0|2 + |𝛼1|2 + ⋯+ |𝛼𝑁−1|2 = 1. (2) 
 
When confining each 𝛼𝑖 to the real domain ℝ, 
the amount of necessary data can be reduced 
further by 1 variable. Indeed, without loss  
the generality, the last variable 𝛼𝑁−1 would be 
computed from the 𝑁 − 1 previous ones: 
 

𝛼𝑁−1 = �1 − 𝛼02 − 𝛼12 − ⋯− 𝛼𝑁−22 . (3) 
 
From now on, it will be assumed in this paper 
that the probability amplitudes are nonnegative 
real, i.e. 𝛼𝑖 ∈ [0; 1], for each 𝑖 = 0,1, … ,𝑁 − 1. 

Splitting the quantum register of 𝑛 qubits 
into two – one of 𝑑 qubits and another one of 
(𝑛 − 𝑑) qubits – would allow to save some 
number of quantum probability amplitudes.  
The number of necessary variables for modelling 
a quantum register of 𝑑 qubits is 2𝑑 − 1 and, for 
modelling a quantum register of (𝑛 − 𝑑) qubits, 
2𝑛−𝑑 − 1 variables are necessary. Thus,  
the overall saving is: 
 
𝑠𝑛,𝑑 = (2𝑛 − 1) − �2𝑛−𝑑 − 1� − �2𝑑 − 1� =

= 2𝑛 − 2𝑛−𝑑 − 2𝑑 + 1. 
(4) 

Without the loss of generality, it can be assumed 
that 𝑑 ≤ 1

2
𝑛 and that the split routine separates 

the first 𝑑 qubits from the other (𝑛 − 𝑑) ones.  
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In fact, if it had not been the case, some 
appropriate swaps on quantum registers would 
be applied before and after the presented routine. 
Then, it is easily seen that the saving is effective 
for 1 ≤ 𝑑 ≤ 1

2
𝑛: 

 
𝑠𝑛,𝑑 = �2𝑛−𝑑 − 2𝑛−2𝑑 − 1�2𝑑 + 1 = 
= �2𝑛−𝑑�1 − 2−𝑑� − 1�2𝑑 + 1 ≥ 
≥ �2𝑑�1 − 2−𝑑� − 1�2𝑑 + 1 = 
= �2𝑑 − 2�2𝑑 + 1 ≥ 1. 

(5) 
 
The above formula shows that any split reduces 
the amount of data necessary to represent it, i.e., 
the number of degrees of freedom. Nevertheless, 
it must be taken into account that the saving on 
the degrees of freedom would be made usually at  
the exchange of accuracy loss. That is, any state 
�|𝝋�⟩ can be expressed as per (1), but, due to 
possible quantum entanglement, is not 
necessarily separable. It means that not all such 
states can be expressed as �|𝝋�⟩ = �|𝝋𝐴

�⟩ ⊗ �|𝝋𝐵
�⟩, 

where �|𝝋𝐴
�⟩ = 𝛼0𝐴�|0 … 00�⟩ + 𝛼1𝐴�|0 … 01�⟩ + ⋯+

𝛼2𝑑−1
𝐴 �|1 … 11�⟩ and �|𝝋𝐵

�⟩ = 𝛼0𝐵�|0 … 00�⟩ +
𝛼1𝐵�|0 … 01�⟩ + ⋯+ 𝛼2𝑛−𝑑−1

𝐵 �|1 … 11�⟩, see e.g. 
[10]. However, every state �|𝝋�⟩, whether 
separable or not, belongs to a Hilbert space, that 
has its own norm, which is a continuous function 
of the coefficients 𝛼0, 𝛼1, … , 𝛼2𝑛−1 in (1), and a 
metric induced by this norm (see e.g. [6], [7]). 
Assume that there exist a transformation 𝒯 on 
the space of quantum states, continuous with the 
above metric and that, for every state as an 
argument, gives a separable state as its value. 
Assume also that, for every separable state, 𝒯 is 
invariant, i.e. gives this same state. Intuitively, 
𝒯�|𝝋�⟩ = �|𝝋�⟩, if �|𝝋�⟩ is separable, and 𝒯�|𝝋�⟩ is 
close to �|𝝋�⟩, if �|𝝋�⟩ is “almost separable”. This is 
due to the assumed continuity of 𝒯. Then, the 
distance between 𝒯�|𝝋�⟩ and �|𝝋�⟩ would be a 
candidate for measuring the strength of 
entanglement. The 𝒯, in turn, would be called a 
disentanglement operator. 
 
3. Disentanglement measure 
 
Assume, like in the previous section, that  
the quantum register is to be split so that the first 
𝑑 qubits would form one register and the next 
(𝑛 − 𝑑) would form the other one. The classical 
state |�𝝋〉� ∈ ℍ⊗𝑛 = ℍ⊗𝑑 ⊗ℍ⊗(𝑛−𝑑) of  
the original quantum register can be expressed as 
 

|�𝝋〉� = �  � 𝛾𝑘𝑙|�𝑘〉�|�𝑙〉�
2(𝑛−𝑑)−1

𝑙=0

2𝑑−1

𝑘=0

, 

 (6) 
 
where each 0 ≤ 𝛾𝑘𝑙 ≤ 1  (is nonnegative real). 
Meanwhile, to separate it between ℍ⊗𝑑 and 
ℍ⊗(𝑛−𝑑), a new state 𝒯�|𝝋�⟩ = |�𝝋′〉� = |�𝝋𝐴

′ 〉�|�𝝋𝐵
′ 〉� 

is necessary, |�𝝋𝐴
′ 〉� ∈ ℍ⊗𝑑, |�𝝋𝐵

′ 〉� ∈ ℍ⊗(𝑛−𝑑). 
The data capacity saving, as stated in the 
previous section, is made because the number of   
quantum probability amplitudes of |�𝝋𝐴

′ 〉� and 
|�𝝋𝐵

′ 〉� is lower than that of 
the original |�𝝋〉�. The data loss, due to such  
a split (transformation 𝒯), might be expressed as 
a distance between |�𝝋〉� and 𝒯�|𝝋�⟩ = |�𝝋′〉�. Since 
both are of the norm 1, we obtain that 
 

‖𝝋′ − 𝝋‖2 = ⟨𝝋′ − 𝝋|𝝋′ − 𝝋⟩ = 
= ⟨𝝋′|𝝋′⟩ − ⟨𝝋′|𝝋⟩ − ⟨𝝋|𝝋′⟩ + ⟨𝝋|𝝋⟩ = 
= ⟨𝝋|𝝋⟩ + ⟨𝝋′|𝝋′⟩ − ⟨𝝋|𝝋′⟩��������� − ⟨𝝋|𝝋′⟩ = 

= 2 − 2Re{⟨𝝋|𝝋′⟩}. 
(7) 

 
Since |�𝝋〉� is assumed to have real coefficients, 
the following formula for the distance is derived: 
 

d(𝝋,𝝋′) = ‖𝝋′ − 𝝋‖ = �2(1 − ⟨𝝋|𝝋′⟩). 
(8) 

 
The distance d ranges from 0, for |�𝝋〉� = |�𝝋′〉�, to 
2, for |�𝝋〉� = −|�𝝋′〉�. Thus, 0 means that |�𝝋〉� is 
separable, whereas the greater the measure d, the 
more entanglement is presumed. Now, note that 
the function 𝑓: 𝑥 → �1 − 𝑥2

2
�, 0 ≤ 𝑥 ≤ 2, is 

monotone decreasing, 𝑓(0) = 1 and 𝑓(2) = −1. 
To simplify the things a little bit, let us define 
the similarity (denoted by 𝜀) as 
 

𝜀 = 𝑓�d(𝝋,𝝋′)� = ⟨𝝋|𝝋′⟩. (9) 
 
This is the cosine of the angle between the state 
|�𝝋〉� and |�𝝋′〉�. It is easily seen that, if |�𝝋′〉� = |�𝝋〉�, 
the similarity is 𝜀 = 1. Hence, it is required that 
|�𝝋𝐴

′ 〉� and |�𝝋𝐵
′ 〉� are constructed in such a way 

that, for |�𝝋〉� = |�𝝋′〉� = |�𝝋𝐴
′ 〉� ⊗ |�𝝋𝐵

′ 〉�, the 
similarity measure is ⟨𝝋|𝝋′⟩ = 1. 
 
Now, let the disentanglement operator 𝒯 be such 
that: 
 

|�𝝋𝐴
′ 〉� = �� 𝐴𝑘|�𝑘〉�

2𝑑−1

𝑘=0

� 

(10) 
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and 

|�𝝋𝐵
′ 〉� = � � 𝐵𝑙|�𝑙〉�

2(𝑛−𝑑)−1

𝑙=0

�, 

(11) 
where 

𝐴𝑘 = � � 𝛾𝑘𝑙2
2(𝑛−𝑑)−1

𝑙=0

 

(12) 
and 

𝐵𝑙 = � � 𝛾𝑘𝑙2
2𝑑−1

𝑘=0

. 

(13) 
 
The coefficients (12) and (13) define correct 
|�𝝋𝐴

′ 〉� and |�𝝋𝐵
′ 〉�. Indeed, the squares of 

coefficients for |�𝝋𝐴
′ 〉� sum up to 

 

� 𝐴𝑘2
2𝑑−1

𝑘=0

= �

⎝

⎜
⎛� � 𝛾𝑘𝑙2

2(𝑛−𝑑)−1

𝑙=0
⎠

⎟
⎞

2

2𝑑−1

𝑘=0

= 

= �  � 𝛾𝑘𝑙2
2(𝑛−𝑑)−1

𝑙=0

2𝑑−1

𝑘=0

= 1. 

(14) 
 
Likewise, the squares of coefficients for |�𝝋𝐵

′ 〉� 
sum up to 
 

� 𝐵𝑙2
2(𝑛−𝑑)−1

𝑙=0

= �

⎝

⎜
⎛� � 𝛾𝑘𝑙2

2𝑑−1

𝑘=0
⎠

⎟
⎞

2

2(𝑛−𝑑)−1

𝑙=0

= 

= �  � 𝛾𝑘𝑙2
2𝑑−1

𝑘=0

2(𝑛−𝑑)−1

𝑙=0

= 1. 

(15) 
 
The above two formulas are true in view of how 
|�𝝋〉� is defined in (6). The squares of its 
coefficients must sum to 1, so do those in (14) 
and (15). 

Having defined the separation formula (10), 
(11), let us check its impact on the original state. 
The measure 𝜀 gives the following inner product 
of the two: 
 

⟨𝝋|𝝋′⟩ = �〈𝝋�|(|�𝝋𝐴
′ 〉�|�𝝋𝐵

′ 〉�) = 
 

= ��  � 𝛾𝑘𝑙 �〈𝑘�|�〈𝑙�|
2(𝑛−𝑑)−1

𝑙=0

2𝑑−1

𝑘=0

� ⋅ 

⋅ ��  � 𝐴𝑚𝐵𝑛|�𝑚〉�|�𝑛〉�
2(𝑛−𝑑)−1

𝑛=0

2𝑑−1

𝑚=0

� = 

 

= � � � � 𝛾𝑘𝑙𝐴𝑚𝐵𝑛�〈𝑘�|�〈𝑙�||�𝑚〉�|�𝑛〉 =�
2𝑛−𝑑−1

𝑛=0

2𝑑−1

𝑚=0

2𝑛−𝑑−1

𝑙=0

2𝑑−1

𝑘=0

 

 

= � � � � 𝛾𝑘𝑙𝐴𝑚𝐵𝑛⟨𝑘|𝑚⟩⟨𝑙|𝑛⟩
2𝑛−𝑑−1

𝑛=0

2𝑑−1

𝑚=0

2𝑛−𝑑−1

𝑙=0

2𝑑−1

𝑘=0

= 

 

= �  � 𝛾𝑘𝑙𝐴𝑘𝐵𝑙

2𝑛−𝑑−1

𝑙=0

2𝑑−1

𝑘=0

. 

(16) 
 
Please note, that, for a separable state |�𝝋〉� as  
per (6), the conversion (10) – (13) is ineffective.  
That is, for a state |�𝝋〉� = |�𝝋𝐴〉�|�𝝋𝐵〉�, where 
|�𝝋𝐴〉� ∈ ℍ⨂𝑑 and |�𝝋𝐵〉� ∈ ℍ⨂(𝑛−𝑑), the resulting 
state |�𝝋′〉� = |�𝝋𝐴

′ 〉�|�𝝋𝐵
′ 〉�, where |�𝝋𝐴

′ 〉� ∈ ℍ⨂𝑑 and 
|�𝝋𝐵

′ 〉� ∈ ℍ⨂(𝑛−𝑑), is the same and, of course,  
⟨𝝋|𝝋′⟩ = 1. Indeed, assuming that 
 

|�𝝋𝐴〉� = � 𝛼𝑘

2𝑑−1

𝑘=0

|�𝑘〉� 

(17) 
and 
 

|�𝝋𝐵〉� = � 𝛽𝑙

2(𝑛−𝑑)−1

𝑙=0

|�𝑙〉�, 

(18) 
 
where, of course, 
 

� 𝛼𝑘2
2𝑑−1

𝑘=0

= � 𝛽𝑙2
2(𝑛−𝑑)−1

𝑙=0

= 1, 

(19) 
we have 

|�𝝋〉� = �� 𝛼𝑘

2𝑑−1

𝑘=0

|�𝑘〉��� � 𝛽𝑙

2(𝑛−𝑑)−1

𝑙=0

|�𝑙〉�� = 

= � � 𝛼𝑘𝛽𝑙|�𝑘〉�|�𝑙〉�
2(𝑛−𝑑)−1

𝑙=0

2𝑑−1

𝑘=0

. 

(20) 
Hence, 𝛾𝑘𝑙 = 𝛼𝑘𝛽𝑙 in (6) and 
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𝐴𝑘 = � � 𝛾𝑘𝑙2
2(𝑛−𝑑)−1

𝑙=0

= � � 𝛼𝑘2𝛽𝑙2
2(𝑛−𝑑)−1

𝑙=0

=

= 𝛼𝑘� � 𝛽𝑙2
2(𝑛−𝑑)−1

𝑙=0

= 𝛼𝑘. 

(21) 
Similarly, 

𝐵𝑙 = � � 𝛾𝑘𝑙2
2𝑑−1

𝑘=0

= � � 𝛼𝑘2𝛽𝑙2
2𝑑−1

𝑘=0

 = 

= 𝛽𝑙� � 𝛼𝑘2
2𝑑−1

𝑘=0

= 𝛽𝑙. 

(22) 
Thus, 
 ⟨𝝋|𝝋′⟩ = (�〈𝝋𝐴

�|�〈𝝋𝐵
�|)(|�𝝋𝐴

′ 〉�|�𝝋𝐵
′ 〉�) = 

= ⟨𝝋𝐴|𝝋𝐴
′ ⟩⟨𝝋𝐵|𝝋𝐵

′ ⟩ = 
 

= �� 𝛼𝑘�〈𝑘�|
2𝑑−1

𝑘=0

��� 𝐴𝑚|�𝑚〉�
2𝑑−1

𝑚=0

� ⋅ 

 

⋅ � � 𝛽𝑙�〈𝑙�|
2(𝑛−𝑑)−1

𝑙=0

�� � 𝐵𝑛|�𝑛〉�
2(𝑛−𝑑)−1

𝑛=0

�= 

 

= �� 𝛼𝑘𝐴𝑘

2𝑑−1

𝑘=0

� ⋅ � � 𝛽𝑙𝐵𝑙

2(𝑛−𝑑)−1

𝑙=0

�= 

 

= �� 𝛼𝑘2
2𝑑−1

𝑘=0

� ⋅ � � 𝛽𝑙2
2(𝑛−𝑑)−1

𝑙=0

� = 1. 

(23) 
 
 
Both |�𝝋〉� and |�𝝋′〉� have nonnegative real 
coefficients in the linear combination of basic 
states expressing them. So do their Hermitian 
adjoints �〈𝝋�| and �〈𝝋�′|, which are mere 
transpositions in this case. Thus, (23) means that 
|�𝝋〉� = |�𝝋′〉�. ■ 
 
4. Entanglement measure 
 
The decision on how to divide a quantum 
register into two parts must be based on how  
the qubits are entangled internally. That is, it 
must be detected somehow which qubit 

observation would affect subsequent 
observations of other qubits. 

In quantum physics, the entanglement 
between two qubits results in correlation 
between their observations. The observation of 
two qubits in the standard basis, whether done 
consecutively or simultaneously, gives its 
outcomes with some probabilities. It is simple to 
show that these two measurement schemes on a 
state |�𝑞𝑛𝑞𝑛−1 …𝑞1〉�, where each 𝑞𝑘 is 0 or 1, are 
equivalent: 
 

 
 
Without loss of generality, it can be assumed 
that 𝑖 = 𝑛 and 𝑗 = 𝑛 − 1. If this is not the case, 
appropriate swap operations 𝑆 and 𝑆−1 can be 
applied: 
 

 
 
Thus, it is sufficient to show that simultaneous 
and consecutive measurement schemes are 
equivalent for the two leftmost qubits. The 
operation 𝑀 in figure 2 is one of such non-
unitary measurements. The following lemma 
proves the equivalence of the two schemes: 
 
Lemma 1 
Two consecutive measurements (in the standard 
basis) on the leftmost and the second leftmost 
qubits result in the outcomes with the same 

|�𝑞1〉� 

|�𝑞𝑖〉� 

|�𝑞𝑛〉� 

⋮ 

|�𝑞𝑛−1〉� 
|�𝑞𝑛−2〉� 

⋮ 
��𝑞𝑗〉� 
⋮ 

⋮ ⋮ 

𝑆 𝑆−1 𝑀 

2 × 

⋮ 

⋮ 

⋮ 

⋮ 

Fig. 2. Swap operations before and after measurement 

|�𝑞1〉� 

|�𝑞𝑛〉� 
⋮ 

|�𝑞2〉� 
|�𝑞3〉� 

⋮ 
|�𝑞𝑖〉� 
⋮ 

≡ 

|�𝑞1〉� 

��𝑞𝑗〉� 

|�𝑞𝑛〉� 
⋮ 

|�𝑞2〉� 
|�𝑞3〉� 

⋮ 
|�𝑞𝑖〉� 
⋮ 

��𝑞𝑗〉� 

Fig. 1. Simultaneous and consecutive measurement of 
two qubits 
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probabilities as if these two were measured 
simultaneously. 
 
Proof 
Let us consider the simultaneous measurement 
scheme first. Let |�𝜑〉� be an initial state as per (1). 
Let us denote the event of an outcome on the 
most significant 𝑚 qubits1 after a simultaneous 
measurement being |�𝑥𝑚〉�|�𝑥𝑚−1〉� … |�𝑥1〉�,  
𝑥𝑘 ∈ {0,1,∗} for 𝑘 = 1,2, … ,𝑚, by 
“𝑥𝑚𝑥𝑚−1 …𝑥1 …” (the star meaning “0 or 1”). 
Let us also denote the event of the same 
outcome, but after consecutive measurements, 
by “𝑥𝑚 …𝑥𝑖+1, 𝑥𝑖 …𝑥1 …”, i.e. the comma 
separates the qubit outcomes measured at 
different times. The probabilities of outcomes 
|�0〉�|�0〉�, |�0〉�|�1〉�, |�1〉�|�0〉� and |�1〉�|�1〉� on the two 
leftmost qubits after measuring them 
simultaneously are as follows: 
 

Pr{00 … } = |𝛼0|2 + |𝛼1|2 + ⋯+ �𝛼𝑁
4 −1

�
2

, 

Pr{01 … } = �𝛼𝑁
4
�
2

+ �𝛼𝑁
4 +1

�
2

+ ⋯+ �𝛼𝑁
2 −1

�
2

, 

Pr{10 … } = �𝛼𝑁
2 
�
2

+ �𝛼𝑁
2+1

�
2

+ ⋯+ �𝛼3𝑁
4  −1

�
2

, 

Pr{11 … } = �𝛼3𝑁
4  
�
2

+ �𝛼3𝑁
4 +1

�
2

+ ⋯+ |𝛼𝑁−1|2. 

(24) 
 
On the other hand, when measuring only the 
leftmost qubit, the outcome probabilities are: 
 

Pr{0 … } = |𝛼0|2 + |𝛼1|2 +⋯+ �𝛼𝑁
2 −1

�
2

, 

Pr{1 … } = �𝛼𝑁
2 
�
2

+ �𝛼𝑁
2+1

�
2

+ ⋯+ |𝛼𝑁−1|2, 

(25) 
 
and the quantum states after the collapse are, 
respectively, 
 
|�𝜑0〉� = 𝑐0 �𝛼0�|00 … 00�⟩ + 𝛼1�|00 … 01�⟩ + ⋯

+ 𝛼𝑁
2−1

�|01 … 11�⟩�, 

|�𝜑1〉� = 𝑐1 �𝛼𝑁
2
�|10 … 00�⟩ + 𝛼𝑁

2+1
�|10 … 01�⟩ + ⋯

+ 𝛼𝑁−1�|11 … 11�⟩�, 

(26) 
where 𝑐0, 𝑐1 are normalising coefficients: 

                                                 
1 These qubits are the leftmost ones in the Dirac’s ket 
notation and are located at the bottow when depicted 
in a quantum circuit. 

𝑐0 =
1

�|𝛼0|2 + |𝛼1|2 + ⋯+ �𝛼𝑁
2−1

�
2

=

=
1

�Pr{0 … }
 , 

 

𝑐1 =
1

��𝛼𝑁
2
�
2

+ �𝛼𝑁
2+1

�
2

+ ⋯+ |𝛼𝑁−1|2

=

=
1

�Pr{1 … }
 . 

(27) 
 
Note that Pr{0 … } = Pr{00 … } + Pr{01 … } and 
Pr{1 … } = Pr{10 … } + Pr{11 … }. After 
measuring the second leftmost qubit, provided 
that the state of the leftmost one was |�𝑥〉� before 
the second measurement, an outcome state 
|�𝑥〉�|�𝑦〉� on the two qubits in question is described 
by the conditional probability: 
 
Pr{𝑥, 𝑦… |𝑥 … } = Pr{𝑥, 𝑦 …∩ 𝑥… } / Pr{𝑥… }

= Pr{𝑥, 𝑦… } / Pr{𝑥 … }, 
(28) 

 
for 𝑥 and 𝑦 from {0,1}. That is, the probability 
of observing 𝑦 on the second leftmost qubit after 
𝑥 has been observed in the leftmost one, is as per 
(28). This gives: 
 

Pr{𝑥, 𝑦… } = Pr{𝑥, 𝑦 … |𝑥 … } ∙ Pr{𝑥 … }    (29) 
 
Next, 
 
Pr{0,0 … |0 … } = 

= |𝑐0𝛼0|2 + |𝑐0𝛼1|2 +⋯+ �𝑐0𝛼𝑁
4−1

�
2
 

=
1

Pr{0 … } �|𝛼0|2 + |𝛼1|2 + ⋯+ �𝛼𝑁
4−1

�
2
�, 

 
Pr{0,1 … |0 … } = 

= �𝑐0𝛼𝑁
4
�
2

+ �𝑐0𝛼𝑁
4+1

�
2

+⋯+ �𝑐0𝛼𝑁
2−1

�
2
 

=
1

Pr{0 … } ��𝛼𝑁4
�
2

+ �𝛼𝑁
4+1

�
2

+ ⋯+ �𝛼𝑁
2−1

�
2
�, 

 
 
Pr{1,0 … |1 … } = 

= �𝑐1𝛼𝑁
2
�
2

+ �𝑐1𝛼𝑁
2+1

�
2

+ ⋯+ �𝑐1𝛼3𝑁
4 −1

�
2

= 

=
1

Pr{1 … } ��𝛼𝑁2
�
2

+ �𝛼𝑁
2+1

�
2

+ ⋯+ �𝛼3𝑁
4 −1

�
2
�, 
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Pr{1,1 … |1 … } = 

= �𝑐1𝛼3𝑁
4
�
2

+ �𝑐1𝛼3𝑁
4 +1

�
2

+ ⋯+ |𝑐1𝛼𝑁−1|2 = 

=
1

Pr{1 … } ��𝛼3𝑁4
�
2

+ �𝛼3𝑁
4 +1

�
2

+ ⋯

+ |𝛼𝑁−1|2�. 

(30) 
Finally, by (29) and (30): 
 

Pr{0,0 … } = |𝛼0|2 + |𝛼1|2 + ⋯+ �𝛼𝑁
4−1

�
2

=

= Pr{00 … }, 
 

Pr{0,1 … } = �𝛼𝑁
4
�
2

+ �𝛼𝑁
4+1

�
2

+ ⋯+ �𝛼𝑁
2−1

�
2

=

= Pr{01 … }, 
 

Pr{1,0 … } = �𝛼𝑁
2
�
2

+ �𝛼𝑁
2+1

�
2

+ ⋯

+ �𝛼3𝑁
4 −1

�
2

= Pr{10 … }, 

 

Pr{1,1 … } = �𝛼3𝑁
4
�
2

+ �𝛼3𝑁
4 +1

�
2

+⋯

+ |𝛼𝑁−1|2= Pr{11}. 
(31) 

 
This proves that consecutive measurements in 
the standard basis give their outcomes  
with probabilities Pr{𝑥, 𝑦… } equal to  
the corresponding probabilities Pr{𝑥𝑦… }  
of outcomes in simultaneous measurement. ∎ 
 
This simplified approach of measuring the 
entanglement only within pairs of qubits is 
designed for the purposes of quantum register 
splitting algorithm (developed later in this 
paper). However, one should bear in mind that 
the entanglement is a wider phenomenon and 
might involve more that 2 qubits. For example, 
no measurement on the leftmost or the central 
qubit in the state |�𝜑〉� = 1

2
(|�001〉� + |�010〉� +

|�100〉� + |�111〉�) can determine the state of the 
rightmost one. Whether the outcome is |�0〉� or 
|�1〉�, the rightmost qubit always remains |�+〉� =
1
√2

(|�0〉� + |�1〉�). On the other hand, when both, the 
leftmost and central qubits, are measured 
together, their outcomes determine the state of 
the rightmost one – |�00〉� and |�11〉� determine that 
this is |�1〉�, whereas |�01〉� and |�10〉� determine that 
this is |�0〉�. This shows that, in terms of 

entanglement, the 3 qubits should be considered 
together in the above state. 
 
Now, to easily measure the strength of 
entanglement between two qubits, say 𝑖’th and 
𝑗’th ones, it is necessary to determine  
the possible outcomes of measurements on them. 
Knowing the current quantum state,  
the measurement of 𝑖-th and 𝑗-th qubits can be 
simulated. As just shown, it is indifferent for this 
experiment whether the measurement takes place 
in the consecutive or simultaneous scheme. Let 
𝒷𝑘(𝑎) denote the 𝑘-th least significant digit in 
the binary representation of 𝑎 (or the digit 
corresponding to the 𝑘-th qubit from the right). 
Then, the probability 𝑝𝑖𝑗

𝑥𝑦 of the 𝑖-th and 𝑗-th 
qubits collapse after measurement to |�𝑥〉� and |�𝑦〉�, 
respectively, where 𝑥, 𝑦 ∈ {0,1}, is 
 

𝑝𝑖𝑗
𝑥𝑦 = � |𝛼𝑎|2

𝒷𝑖(𝑎)=𝑥,
𝒷𝑗(𝑎)=𝑦

, 

(32) 
where 𝛼𝑎, for 𝑎 = 0,1, … ,𝑁 − 1, as per (1). 
 
Example 1 
Let |�𝜑〉� = 𝛼1|�001〉� + 𝛼3|�011〉� + 𝛼7|�111〉�, 
where 𝛼1 = 𝛼3 = 𝛼7 = 1

√3
. For the first two 

qubits from the right, the following outcome 
probabilities are derived: 𝑝1200 = 𝑝1201 = 0, 
𝑝1210 = |𝛼1|2 = 1

3
, 𝑝1211 = |𝛼3|2 + |𝛼7|2 = 2

3
.  

The second and the third qubits result in: 
 𝑝2300 = |𝛼1|2 = 1

3
, 𝑝2301 = 0, 𝑝2310 = |𝛼3|2 = 1

3
, 

𝑝2311 = |𝛼7|2 = 1
3
, and the pair of the first and the 

third ones result in 𝑝1300 = 𝑝1301 = 0, 
 𝑝1310 = |𝛼1|2 + |𝛼3|2 = 2

3
, 𝑝1311 = |𝛼7|2 = 1

3
. ▲ 

 
The outcomes on the two qubits in question, 

along with their probabilities, can be considered 
as two independent random variables 𝑍𝑖 and 𝑍𝑗 
taking binary values. Thus, their 2-dimensional 
joint probability distribution, two marginal 
probability distributions, and Pearson correlation 
coefficient 𝜚𝑖𝑗 might be computed.  
The following table shows the aforementioned 
probability distributions: 
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Tab. 1. Probability distributions for computing 𝝔𝒊𝒋 

Note that all the powers of a binary value are 
equal, i.e. 0 = 0𝑘 and 1 = 1𝑘, for all 𝑘 ∈ ℕ+. 
Hence, the 𝑘-th power of some binary random 
variable 𝑍 have the same probability distribution 
as the underlying random variable itself. This 
implies that 
 

E[𝑍𝑘] = E[𝑍],    (33) 
 
where Z – binary distributed (takes value of 0  
or 1). 

Recall that the Pearson correlation 
coefficient is computed as follows (see e.g. [1], 
[5], [9]): 

𝜚𝑖𝑗 =
Cov�𝑍𝑖, 𝑍𝑗�
D𝑍𝑖 ⋅ D𝑍𝑗

, 

(34) 
 
where D𝑍𝑖 and D𝑍𝑗 are the standard deviations 
of 𝑍𝑖 and 𝑍𝑗, respectively, and Cov�𝑍𝑖, 𝑍𝑗�  
is the covariance between 𝑍𝑖 and 𝑍𝑗.  
The covariance is, in turn, computed as (see e.g. 
[1], [5], [9]) 
 

Cov�𝑍𝑖, 𝑍𝑗� = E�(𝑍𝑖 − E𝑍𝑖)�𝑍𝑗 − E𝑍𝑗�� = 
= E�𝑍𝑖𝑍𝑗� −  E𝑍𝑖  ⋅ E𝑍𝑗 . (35) 

 
and the variance (see e.g. [1], [9]) 
 

D2𝑍 = E[𝑍 − E𝑍]2 = E[𝑍2] − E2[𝑍]. (36) 
 
Due to (33), for binary random variables, we 
obtain 
 

D2𝑍 = E𝑍 − E2[𝑍] = E𝑍(1 − E𝑍). (37) 
 
Further,  

E𝑍𝑖 = E[𝑍𝑖]2 =
1
𝑝𝑖𝑗⋅⋅

�0 ⋅ 𝑝𝑖𝑗0⋅ + 1 ⋅ 𝑝𝑖𝑗1⋅� = 𝑝𝑖𝑗1⋅, 

 (38) 
and, similarly,  
 

E𝑍𝑗 = E�𝑍𝑗�
2 =

1
𝑝𝑖𝑗⋅⋅

�0 ⋅ 𝑝𝑖𝑗⋅0 + 1 ⋅ 𝑝𝑖𝑗⋅1� = 𝑝𝑖𝑗⋅1. 

 (39) 
Next, the expectation of the product is 

E�𝑍𝑖𝑍𝑗� =
1
𝑝𝑖𝑗⋅⋅

� � 𝑎 ⋅ 𝑏 ⋅ 𝑝𝑖𝑗𝑎𝑏

𝑎,𝑏∈{0,1}

� = 𝑝𝑖𝑗11. 

(40) 
Thus, the covariance is 
 
Cov�𝑍𝑖, 𝑍𝑗� = 𝑝𝑖𝑗11 − 𝑝𝑖𝑗1⋅𝑝𝑖𝑗⋅1 = 𝑝𝑖𝑗11𝑝𝑖𝑗⋅⋅ − 𝑝𝑖𝑗1⋅𝑝𝑖𝑗⋅1 = 
 

= 𝑝𝑖𝑗00𝑝𝑖𝑗11 − 𝑝𝑖𝑗01𝑝𝑖𝑗10. 
 (41) 

The variance of 𝑍𝑖 is 
 

D2𝑍𝑖 = 𝑝𝑖𝑗1⋅�1 − 𝑝𝑖𝑗1⋅� = 𝑝𝑖𝑗1⋅𝑝𝑖𝑗0⋅ = 
 

= �𝑝𝑖𝑗10 + 𝑝𝑖𝑗11��𝑝𝑖𝑗00 + 𝑝𝑖𝑗01�. 
(42) 

Likewise, the variance of 𝑍𝑗 is 
 

D2𝑍𝑗 = 𝑝𝑖𝑗⋅1�1 − 𝑝𝑖𝑗⋅1� = 𝑝𝑖𝑗⋅1𝑝𝑖𝑗⋅0 = 
 

= �𝑝𝑖𝑗01 + 𝑝𝑖𝑗11��𝑝𝑖𝑗00 + 𝑝𝑖𝑗10�. 
(43) 

Finally, 

𝜚𝑖𝑗 =
𝑝𝑖𝑗00𝑝𝑖𝑗11 − 𝑝𝑖𝑗01𝑝𝑖𝑗10

�𝑝𝑖𝑗1⋅𝑝𝑖𝑗0⋅𝑝𝑖𝑗⋅1𝑝𝑖𝑗⋅0
= 

= 
𝑝𝑖𝑗00𝑝𝑖𝑗11 − 𝑝𝑖𝑗01𝑝𝑖𝑗10

��𝑝𝑖𝑗10 + 𝑝𝑖𝑗11��𝑝𝑖𝑗00 + 𝑝𝑖𝑗01��𝑝𝑖𝑗01 + 𝑝𝑖𝑗11��𝑝𝑖𝑗00 + 𝑝𝑖𝑗10�
. 

(44) 
 
Note that 𝜚𝑖𝑗 = 𝜚𝑗𝑖. Indeed, since 𝑝𝑖𝑗𝑎𝑏 = 𝑝𝑗𝑖𝑏𝑎, 
 

𝜚𝑗𝑖 =
𝑝𝑗𝑖00𝑝𝑗𝑖11 − 𝑝𝑗𝑖01𝑝𝑗𝑖10

�𝑝𝑗𝑖1⋅𝑝𝑗𝑖0⋅𝑝𝑗𝑖⋅1𝑝𝑗𝑖⋅0
=
𝑝𝑖𝑗00𝑝𝑖𝑗11 − 𝑝𝑖𝑗10𝑝𝑖𝑗01

�𝑝𝑖𝑗⋅1𝑝𝑖𝑗⋅0𝑝𝑖𝑗1⋅𝑝𝑖𝑗0⋅
= 

= 𝜚𝑖𝑗.    (45) 
 
Of course, 𝜚𝑖𝑖 = 1. Since 𝑝𝑖𝑖01 = 𝑝𝑖𝑖10 = 0 and 
assuming 𝑝𝑖𝑗𝑎𝑏 > 0 we have 
 

𝜚𝑖𝑖 =
𝑝𝑖𝑖00𝑝𝑖𝑖11 − 𝑝𝑖𝑖01𝑝𝑖𝑖10

�𝑝𝑖𝑖1⋅𝑝𝑖𝑖0⋅𝑝𝑖𝑖⋅1𝑝𝑖𝑖⋅0
=

𝑝𝑖𝑖00𝑝𝑖𝑖11

�𝑝𝑖𝑗11𝑝𝑖𝑗00𝑝𝑖𝑗11𝑝𝑖𝑗00
= 1. 

(46) 
 

 𝑍𝑗
𝑍𝑖   0 1 ∑ 

0 𝑝𝑖𝑗00 𝑝𝑖𝑗01 𝑝𝑖𝑗0⋅ = 
𝑝𝑖𝑗00 + 𝑝𝑖𝑗01 

1 𝑝𝑖𝑗10 𝑝𝑖𝑗11 𝑝𝑖𝑗1⋅ = 
𝑝𝑖𝑗10 + 𝑝𝑖𝑗11 

∑ 𝑝𝑖𝑗⋅0 = 
𝑝𝑖𝑗00 + 𝑝𝑖𝑗10 

𝑝𝑖𝑗⋅1 = 
𝑝𝑖𝑗01 + 𝑝𝑖𝑗11 

𝑝𝑖𝑗⋅⋅ = 

� 𝑝𝑖𝑗𝑎𝑏
𝑎,𝑏

= 1 
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The formula (46) shows that even if 𝑝𝑖𝑗𝑎𝑏 → 0, or 
is close to 0, 𝜚𝑖𝑖 = 1. However, both 𝑝𝑖𝑖00 and 
𝑝𝑖𝑖11 must be nonzero for the above formula to be 
correct. Otherwise, 𝜚𝑖𝑖 is undefined. In general, 
for 𝜚𝑖𝑗 to be defined, all the sums 𝑝𝑖𝑗1⋅, 𝑝𝑖𝑗0⋅, 𝑝𝑖𝑗⋅1 
and 𝑝𝑖𝑗⋅0 must be nonzero. It will be assumed that 
𝜚𝑖𝑗 is 0, if in fact 𝜚𝑖𝑗 is undefined. The reason is 
that, in such case, 𝜚𝑖𝑗 shows no correlation to 
take into account. All the computed coefficients 
can be collected in a correlation matrix: 
 

𝜚 = �

𝜚11 𝜚12 ⋯ 𝜚1n
𝜚21 𝜚22 ⋯ 𝜚2n
⋮ ⋮ ⋱ ⋮
𝜚n1 𝜚n2 ⋯ 𝜚nn

�

= �

1 𝜚12 ⋯ 𝜚1n
𝜚12 1 ⋯ 𝜚2n
⋮ ⋮ ⋱ ⋮
𝜚1n 𝜚2n ⋯ 1

�. 

(47) 
 
Example 2 
Based on the state shown in example 1,  
the following Pearson correlation coefficients 

are obtained: 𝜚12 =
0∙23−0∙

1
3

��13+
2
3�(0+0)�0+23��0+

1
3�

 is 

undefined, hence by definition equal to 0, next 

𝜚23 =
1
3∙
1
3−0∙

1
3

��13+
1
3��

1
3+0��0+

1
3��

1
3+

1
3�

= 1
2
, and finally 

𝜚13 =
0∙13−0∙

2
3

��13+
2
3�(0+0)�0+13��0+

2
3�

 is also undefined, 

hence 0. ▲ 
 
5. Balanced splitting algorithm 
 
The balanced splitting algorithm divides one 
quantum register into two parts with the numbers 
of qubits differing at most by 1. It is desired that 
highly entangled qubits stay in the same part, 
whereas those “loosely coupled” should be 
spread across the different parts. Thus,  
the register would be marginally affected by  
the disentanglement. Intuitively, this heuristic 
assumption means that such a split would entail 
the least possible loss of information. 

The level of entanglement between two 
qubits, 𝑖-th and 𝑗-th, is assessed by the Pearson 
correlation coefficient 𝜚𝑖𝑗. All such coefficients 
are gathered together in the correlation matrix 
𝜚 = �𝜚𝑖𝑗�𝑖,𝑗∈{1,…,𝑛}. Since 𝜚𝑖𝑗 = 𝜚𝑗𝑖 and 𝜚𝑖𝑖 = 1, 
further considerations will be based on  
the coefficients from above the diagonal, i.e. 𝜚𝑖𝑗 
such that 𝑖 < 𝑗. The first step of the splitting 

algorithm is to sort these coefficients in  
an ascending order. 

 
𝜚𝑖1𝑗1 ≤ 𝜚𝑖2𝑗2 ≤ ⋯ ≤ 𝜚𝑖𝑤𝑗𝑤, (48) 

where 

𝑤 =
𝑛(𝑛 − 1)

2
, 

(49) 
and, for 𝑎 ≠ 𝑏, 
 

(𝑖𝑎, 𝑗𝑎) ≠ (𝑖𝑏, 𝑗𝑏).  (50) 
 
The pair (𝑖1, 𝑗1) represents the indices of  
the least entangled pair of qubits and (𝑖𝑤, 𝑗𝑤) of 
the most entangled one. 

The algorithm operates in a clique whose 
nodes represent qubits and labelled edges 
represent the level of the entanglement between 
two neighbouring qubits. The first step of  
the algorithm is to find the matching in  
the clique of the minimal overall entanglement. 
This is done as follows: iterate over the ordered 
pairs of indices (𝑖1, 𝑗1), (𝑖2, 𝑗2), … , (𝑖𝑤, 𝑗𝑤).  
If, for a given pair (𝑖𝑘, 𝑗𝑘), where 𝑘 = 1,2, … , 𝑤, 
neither 𝑖𝑘-th qubit nor 𝑗𝑘-th one have been 
selected yet for the resulting matching, add  
the edge (𝑖𝑘, 𝑗𝑘). If not, try with the next 𝑘. 
Repeat so, until at least two nodes have not been 
covered yet by the matching. 
 
Example 3 
Let 𝑛 = 6 be the number of qubits and  
the correlation matrix be as follows: 

𝜚 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 √2

√3
1
3

0 0 1 1 √2
√3

1
3

0 0 √2
√3

√2
√3

1 1
√3

0 0 1
3

1
3

1
√3

1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

There are different coefficients of the same 
value, but assume that a sorting algorithm gave 
the following order: 𝜚13 ≤ 𝜚14 ≤ 𝜚15 ≤ 𝜚16 ≤
𝜚23 ≤ 𝜚24 ≤ 𝜚25 ≤ 𝜚26 ≤ 𝜚36 ≤ 𝜚46 ≤ 𝜚56 ≤
𝜚35 ≤ 𝜚45 ≤ 𝜚12 ≤ 𝜚34. 6 nodes are going to 
represent the qubits, among which a matching is 
to be found. Recall that each matched pair 
represent two qubits that must fall into two 
different subsets after the split. At first,  
the matching contains no pairs. The algorithm 
iterates over the pairs (1,3), (1,4), (1,5), (1,6), 
(2,3), (2,4), (2,5), (2,6), (3,6), (4,6), (5,6), (3,5), 
(4,5), (1,2), (3,4). The first pair (1,3) gives  
the first pair of the constructed matching, 
because neither node 1 nor node 3 have been 
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engaged in there yet. Next, the pairs (1,4), (1,5), 
(1,6), (2,3) will not be considered as they contain 
either 1 or 3. The pair (2,4) is found to be  
the next one in the matching. The pairs (2,6), 
(3,6), (4,6) are rejected and, finally, (5,6) is 
selected as the last pair for the matching.  
Of course, (3,5), (4,5), (1,2), (3,4) must be 
rejected as there is no node left. The following 
picture shows the resulting matching: 
 

 
Fig. 3. A matching to separate qubits 

▲ 
The second stage of the splitting algorithm 

consists in determining two disjoint subsets such 
that both cover all the nodes but no two nodes 
from a pair in the matching belong to the same 
one. It starts with two subsets, each of which 
contains nodes from exactly one element of any 
matching pair. The aim is to interchange 
elements between the two until, according to 
some measure, both contains highly correlated 
elements. Let us denote this measure by 𝜛𝑆, 
where S is a set of qubit indices, and define it  
as the sum of absolute values of all the Pearson 
correlation coefficients corresponding to 
(unordered) pairs of elements within subset  
𝑆, i.e. 

𝜛𝑆 = ��𝜚𝑖𝑗�
𝑖,𝑗∈𝑆
𝑖<𝑗

. 

(51) 
 

Now, choose randomly a subset 𝑆𝐿 in such  
a way that it contain exactly one element from 
each pair of the matching. Of course,  
the complementary subset 𝑆𝑅 = {1,2, … , 𝑛} − 𝑆𝐿 
contain at most one element of each pair (always 
the different one that 𝑆𝐿 does), but it also 
contains elements not picked up for matching 
pairs. Nevertheless, there should exist exactly 
one such element in 𝑆𝑅, if 𝑛 is an odd number, 
and no such element should exist, if 𝑛 is even. 

Interchanging elements between 𝑆𝐿 and 𝑆𝑅 
should be performed in such a way that  
the overall measure 

 
𝜛 = 𝜛𝑆𝐿 + 𝜛𝑆𝑅        (52) 

increases. Denoting the subsets of qubit indices 
at time 𝑡 by, respectively, 𝑆𝐿𝑡 and 𝑆𝑅𝑡 , and 
choosing a pair 𝑙 ∈ 𝑆𝐿𝑡 and 𝑟 ∈ 𝑆𝑅𝑡 , where {𝑙, 𝑟} is 
a pair from the matching, to interchange between 
𝑆𝐿𝑡 and 𝑆𝑅𝑡 , we have: 
 

𝑆𝐿𝑡+1 = 𝑆𝐿𝑡 ∖ {𝑙} ∪ {𝑟}, 
𝑆𝑅𝑡+1 = 𝑆𝑅𝑡 ∖ {𝑟} ∪ {𝑙}. 

(53) 
We also expect that 
𝜛𝑡+1 = 𝜛𝑆𝐿

𝑡+1 + 𝜛𝑆𝑅
𝑡+1 ≥ 𝜛𝑡 = 𝜛𝑆𝐿

𝑡 + 𝜛𝑆𝑅
𝑡 , 
(54) 

 
that is, the interchange must improve the 
measure 𝜛 of “internal correlations” between 
times 𝑡 and 𝑡 + 1. With 𝜚 = �𝜚𝑖𝑗�𝑖,𝑗∈{1,..,𝑛} as per 
(47), the improvement by interchanging 
 𝑙 with 𝑟 is Δ𝜛(𝑙, 𝑟) = 𝜛𝑡+1 − 𝜛𝑡 = 
= � (|𝜚𝑖𝑟| − |𝜚𝑖𝑙|)

𝑖∈𝑆𝐿
𝑡\{𝑙} 

+ � (|𝜚𝑖𝑙| − |𝜚𝑖𝑟|)
𝑖∈𝑆𝑅

𝑡 \{𝑟}

= 

 
= � (−1)[𝑖∈𝑆𝑅

𝑡 ] (|𝜚𝑖𝑟| − |𝜚𝑖𝑙|)
𝑖∈{1,2,…,𝑛}\{𝑙,𝑟} 

. 

(55) 
 
In each step, this greedy algorithm looks for  
a pair (𝑙, 𝑟) such that Δ𝜛(𝑙, 𝑟) is greatest, yet 
positive. It then interchanges 𝑙 and 𝑟 between 𝑆𝐿 
and 𝑆𝑅. It does so unless the greatest Δ𝜛(𝑙, 𝑟) is 
zero or negative, which shows no possible 
improvement in one step by interchanging just 
one pair of qubit indices.  

Of course, one could argue that this way 
some local optimum can be hit, while the global 
one is missed. This might be true, but a full scan 

would entail 2�
𝑛
2� computations similar to (55). 

Each of the 2�
𝑛
2� possibilities means that either 

endpoint of each of �𝑛
2
� matching pairs is 

selected for 𝑆𝐿. Thus, the complexity grows to at 
least exponential in size. 
 
Example 4 
Let 𝑛, 𝜚 and the corresponding matching be as in 
example 3. Assume that, according to  
the matching, the two initial subsets are {1,2,5} 
and {3,4,6} – see figure 4. 
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Fig. 4. Initial split of qubits 

Now, the potential impact of switching of the 
three pairs, (1,3), (2,4) and (5,6), should be 
assessed. That is, there are 3 following cases of 
potential splits to investigate: a) {2,3,5} and 
{1,4,6} after interchanging 1 and 3 between 
𝑆𝐿0 = {1,2,5} and 𝑆𝑅0 = {3,4,6}, b) {1,4,5} and 
{2,3,6} after interchanging 2 and 4, and c) 
{1,2,6} and {3,4,5} after interchanging 5 and 6. 
Hence, considered should be three values: 
Δ𝜛(1,3), Δ𝜛(2,4) and Δ𝜛(5,6). These are, 
respectively, 

 Δ𝜛(1,3) = 0 − 1 + √2
√3
− 0 + 0 − 1 + 0 − 1

3
=

= √6−7
3

≅ −1.517,  

Δ𝜛(2,4) = 0 − 1 +
√2
√3

− 0 + 0 − 1 + 0 −
1
3

= 

= √6−7
3

≅ −1.517,  

Δ𝜛(5,6) = 0 − 0 + 0 − 0 + √2
√3
− 1

3
+ √2

√3
− 1

3
=

= 2√6−2
3

≅ 0.966.  
This shows that, Δ𝜛(5,6) is the greatest one and 
is positive. Hence, 5 and 6 should be 
interchanged with each other between the two 
subsets, which now are going to be {1,2,6} and 
{3,4,5} and the matching – as follows: 
 

 
Fig. 5. The split after the first turn 

In the next turn, computed are: a) Δ𝜛(1,3) to 
assess the potential splitting resulting in {2,3,6} 
with {1,4,5}, b) Δ𝜛(2,4) to assess potential 
{1,4,6} with {2,3,5}, and c) Δ𝜛(6,5) to assess 
{1,2,5} with {3,4,6}. The last case, of course, 
would be a step back, so we do not expect  
a positive value of Δ𝜛(6,5) and would even 
omit computations in this case. In current  

turn Δ𝜛(1,3) ≅ −2.483, Δ𝜛(2,4) ≅ −2.483,  
and Δ𝜛(6,5) ≅ −0.966. Now, for all pairs 
(𝑙, 𝑟), Δ𝜛(𝑙, 𝑟) < 0 and no improvement can be 
achieved further by a single interchange. ▲ 
 
6. Unbalanced splitting algorithm 
 
While the balanced splitting algorithm 
guarantees that a reasonable split is made, it does 
not guarantee that the split is optimal. That is, 
splitting a quantum register into two, almost 
equal in the number of qubits, allows to save  
the most memory although, at the same time,  
a lot of information on entanglement (or 
correlations) might be lost. However, another 
split might perform better in terms of  
the information lost, yet still saving some 
memory storing the information on  
the entanglement (or correlations). So, splits 
other than balanced ones should be considered. 

Recall that the Pearson correlation matrix 
shows the strength of the entanglement  
(or correlation) between each pair of qubits in  
a register. Unbalanced splitting algorithm starts 
with singletons of each qubit, joining them next 
step-by-step into groups, until there are finally 
only 2 groups left. First, the Pearson correlation 
coefficients are sorted in a descending order, 
then each iteration over these coefficients 
determines which two current sets should be 
joined together to form a bigger one. Of course, 
the iteration breaks as soon as the number of the 
sets falls to 2. In essence, two different sets, each 
of which contains one of the two elements from 
the (unordered) pair corresponding to the current 
Pearson correlation coefficient, are joined.  
This is shown in the following example: 
 
Example 5 
Let 𝑛, 𝜚 be as in example 3. The Pearson 
correlation coefficients descending order 
determine the following order of pairs of qubit 
indices: (3,4), (1,2), (4,5), (3,5), (5,6), (4,6), 
(3,6), (2,6), (2,5), (2,4), (2,3), (1,6), (1,5), (1,4), 
(1,3).  The initial singleton sets are formed from 
all the elements (qubits): 
 

 
Fig. 6. Initial singleton sets for unbalanced splitting 
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The first pair (3,4) makes the singletons {3} and 
{4} be joined together: 
 

 
Fig. 7. Step 1 of the unbalanced splitting 

 
Next, pair (1,2) gives: 
 
 

 
Fig. 8. Step 2 of the unbalanced splitting. 

 
At step 3, pair (4,5) joins together the set {3,4} 
containing 4 and the set {5} containing 5: 
 

 
Fig. 9. Step 3 of the unbalanced splitting 

Pair (3,5) does not join any two different sets, as 
its both elements belong to an already build 
subset {3,4,5}. Finally, pair (3,6) makes subsets 
{6} and {3,4,5} be joined into {3,4,5,6}. 
 

 
Fig. 10. The last step of the unbalanced splitting 

This, breaks the iteration over the pairs, as  
the current splitting has the desired number of 
subsets – two. These are {1,2} and {3,4,5,6}. ▲ 
 
Example 6 
Let a separable quantum state be |�𝜑〉� = 

�
1
2

|�0000〉� +
1
2

|�1000〉� +
1
2

|�1100〉� +
1
2

|�1111〉��

⊗ �
1
√2

|�00〉� +
1
√2

|�11〉�� = 

=
1

2√2
|�000000〉� +

1
2√2

|�100000〉� + 

+ 1
2√2

|�110000〉� + 1
2√2

|�111100〉� +

+ 1
2√2

|�000011〉� + 1
2√2

|�100011〉� +

+ 1
2√2

|�110011〉� + 1
2√2

|�111111〉�. 
 
Measuring the first two qubits, it is easily seen 
that they collapse to |�0〉�, |�0〉� or |�1〉�, |�1〉� with 
probabilities 𝑝1200 = 𝑝1211 = 0.5. Of course, 
𝑝1201 = 𝑝1210 = 0. The formula (44) gives 𝜚12 = 1. 
Measuring qubits no. 1 and 3, the following 
probabilities are found: 𝑝1300 = 𝑝1310 = 3

8
 and 

𝑝1301 = 𝑝1311 = 1
8
, giving 𝜚13 = 0, etc.  

The following table shows all the results: 
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Tab. 2. Example probabilities and correlation 
coefficients 

 

 
It is now clear that the correlation matrix 
𝜚 = �𝜚𝑖𝑗�𝑖,𝑗∈{1,..,6} in example 3 resulted from  
the (separable) quantum state shown here. 
Example 5, in turn, shows that unbalanced 
splitting algorithm splits the quantum register 
exactly as per separability of this state (qubits 
no. 1 and 2 vs. qubits no. 3, 4, 5, and 6). ▲ 
 
7. Computational complexity 
 
Both balanced and unbalanced splitting 
algorithms start with computing Pearson 
correlation coefficients (or a matrix of them). 
Since 𝜚𝑖𝑖 = 1 and 𝜚𝑖𝑗 = 𝜚𝑗𝑖, effectively, there 
are 𝑛(𝑛−1)

2
= 𝒪(𝑛2) of them to compute. Each 

one needs a constant number of operations, that 
is 𝒪(1) to derive as per (44), but the four 
underlying values 𝑝𝑖𝑗00, 𝑝𝑖𝑗01, 𝑝𝑖𝑗10, and 𝑝𝑖𝑗11, need 
to iterate together through all the probability 
amplitudes, as per (32). Note that each one of the 
above four needs one fourth of the amplitudes. 
This gives 2𝑛 operations. Overall time 
complexity for computing the correlations is 
 

𝒪(𝑛2) ⋅ 𝒪(1) ⋅ 𝒪(2𝑛) = 𝒪(𝑛22𝑛). (56) 
 

Both algorithms need also sorting  
the coefficients, whether in ascending or 
descending order. Currently, the best known 
universal sorting algorithms’ complexity is 
𝒪(𝑥 log 𝑥) where 𝑥 is the problem size. Since 
there are 𝒪(𝑛2) Pearson correlation coefficients 
to sort, this gives the complexity of 
 

𝒪(𝑛2 log 𝑛2) = 𝒪(𝑛2 log 𝑛). (57) 

Thus the overall complexity of preparing  
the Pearson correlation coefficients for further 
usage in either of the algorithms is 
 

𝒪(𝑛22𝑛) + 𝒪(𝑛2 log 𝑛) = 𝒪(𝑛22𝑛). (58) 
 

Now this is where comes the difference 
between the two algorithms. To find a matching, 
a loop over all 𝒪(𝑛2) coefficients is necessary. 
Assuming that each node is flagged as soon as it 
is picked up for a next pair in the constructed 
matching, checking whether a particular node 
has already been picked up is straightforward 
and consumes only 𝒪(1) of time. Thus  
the matching is constructed within 
 

𝒪(𝑛2) ⋅ 𝒪(1) = 𝒪(𝑛2)  (59) 
 
operations and �𝑛

2
� pairs are produced. 

It can be assumed that a canonical split is 
done as follows: the subset 𝑆𝐿 takes the lower 
values from each matching pair and the subset 
𝑆𝑅 takes the greater ones. Any interchange can 
be expressed by setting a special flag on a pair 
that means “𝑆𝐿 takes the greater value from  
this pair, while 𝑆𝑅 takes the lower one”. Thus  
a table of �𝑛

2
� = 𝒪(𝑛) flags would encode  

the resulting split over the previously prepared 
matching. In each iteration improving  
the measure (52), the formula (55) has to be 
applied to each of the �𝑛

2
� pairs. There are 

(𝑛 − 2) operations involved in computing (55), 
assuming that the matrix 𝜚 has been already 
known. Since finding a best value is linear with 
the number of items, it takes �𝑛

2
� (𝑛 − 2) = 

= 𝒪(𝑛2) operations to find a next pair to 
interchange the values between 𝑆𝐿 and 𝑆𝑅.  
The space of this optimisation problem consists 

of 2�
𝑛
2� = 𝒪(2𝑛) possible solutions. No solutions 

can be “visited” twice, otherwise it would mean 
that no improvement is made between two 
consecutive steps. Thus the number of 
operations to find a balanced matching, given 
sorted coefficients 𝜚𝑖𝑗, is limited to 
 

�𝑛
2
� (𝑛 − 2)2�

𝑛
2� = 𝒪(𝑛22𝑛) (60) 

 
operations. In total, the complexity of  
the balanced algorithm is 
 

𝒪(𝑛22𝑛) + 𝒪(𝑛22𝑛) = 𝒪(𝑛22𝑛). (61) 
 

𝑖 𝑗 𝑝𝑖𝑗00 𝑝𝑖𝑗01 𝑝𝑖𝑗10 𝑝𝑖𝑗11 𝜚𝑖𝑗  
1 2 0.5 0 0 0.5 1 
1 3 0.375 0.125 0.375 0.125 0 
1 4 0.375 0.125 0.375 0.125 0 
1 5 0.25 0.25 0.25 0.25 0 
1 6 0.25 0.25 0.25 0.25 0 
2 3 0.375 0.125 0.375 0.125 0 
2 4 0.375 0.125 0.375 0.125 0 
2 5 0.25 0.25 0.25 0.25 0 
2 6 0.25 0.25 0.25 0.25 0 
3 4 0.75 0 0 0.25 1 
3 5 0.5 0.25 0 0.25 �2/3 
3 6 0.25 0.5 0 0.25 1/3 
4 5 0.5 0.25 0 0.25 �2/3 
4 6 0.25 0.5 0 0.25 1/3 
5 6 0.25 0.25 0 0.5 �1/3 
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The unbalanced algorithm, iterates over 𝑛(𝑛−1)
2

 
coefficients 𝜚𝑖𝑗. Let us assume that its data 
structure to represent the subset a particular node 
belongs to is a table that maps each node number 
to an integer representing the subset number. 
This is a random access table, at no cost of 
reading and writing to it, that is 𝒪(1). In each 
iteration, two nodes, 𝑖 and 𝑗, corresponding to  
a pair 𝜚𝑖𝑗, determine if two subsets need to be 
joined. If so, an inner loop iterating through all 
the 𝑛 = 𝒪(𝑛) nodes in the aforementioned map 
lets necessary remapping. The stop condition of 
the outer loop requires maintaining the current 
number of subsets. There are 𝑛 of them when the 
outer loop starts, and decreases by 1, if a pair 
(𝑖, 𝑗) determines joining two different subsets. 
Hence, this is straightforward to stop when  
the number of subsets falls to 2, with the cost  
of such a check limited to 𝒪(1). The cost of 
unbalanced  splitting algorithm, given sorted 
coefficients 𝜚𝑖𝑗, is thus 
 

𝒪 �𝑛(𝑛−1)
2

� ⋅ 𝒪(𝑛) = 𝒪(𝑛3).  (62) 
 
However, in total, it takes 
 

𝒪(𝑛22𝑛) + 𝒪(𝑛3) = 𝒪(𝑛22𝑛).  (63) 
 
This seems too much, but keeping register sizes 
within reasonable limits would allow to keep  
the complexity reasonable as well. 

Having determined the potential split,  
the disentanglement measure should be 
computed so as to assess it. The formula (10) 
shows that there are 2𝑑 coefficients 𝐴𝑘, each 
computed as per (12) that involves 2 ⋅ 2𝑛−𝑑 + 1 
algebraic operations on 𝛾𝑘𝑙s. This gives 

 
2𝑑 ⋅ �2 ⋅ 2𝑛−𝑑 + 1� = 𝒪(2𝑛) (64) 

 
operations. Similarly, (11) together with (13) 
shows that computing all 𝐵𝑙s need that same 
number of algebraic operations, 𝒪(2𝑛). 
 
8. Conclusion 
 
This paper has shown that a quantum register 
state can be approximated by some separable 
state, close enough to the original one in  
the space of quantum states. To help measure  
the proximity, the inner product of the two states 
is used. However, the model described here is 
applicable to quantum states of real nonnegative 
quantum probability amplitudes. Hence, further 
research can be conducted to discover similar 

properties and rights in a wider domain of 
complex amplitudes. 

The splitting routines, the balanced and 
unbalanced ones, might also be subject to further 
research, to find out if there are better ones.  
That is, it is desirable that the time complexity of 
a potential splitting routine is moderate, yet 
giving sufficient results. Special care should be 
taken to ensure that separable states are  
(in most cases) correctly recognized and  
a quantum register is split as per its separable 
form of the original state (expressed as a tensor 
product). 

The process of splitting a register should 
not lead to a completely disentangled register, 
i.e. a one, in which every qubit form a different 
group, each containing only one element. A 
reasonable limit on such a process should be 
imposed, based on the disentanglement measure. 

The relatively high cost of splitting 
algorithms should be eased by keeping  
the separable subregisters small enough.  
It means that, even if the number of qubits in  
a register is relatively high, these qubits should 
be kept in groups small “enough” to split them 
and join as needed. The “mix” of splitting and 
joining the groups of qubits, as a dynamically 
reconfigurable quantum state model, is beyond 
the scope of this paper, though. 
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Modelowanie rozplątania rejestru kwantowego 
 

P.A. RYSZAWA 
 
Implementacja kwantowo-inspirowanych algorytmów na komputerach klasycznych musi godzić sprzeczność 
pomiędzy koniecznością oszczędzania pamięci operacyjnej a ilością pamięci potrzebnej na reprezentację stanu 
kwantowego z potencjalnym splątaniem. Wiadomo, że to ostatnie pochłania zasoby pamięciowe w ilości 
wykładniczej wraz ze wzrostem liczby kubitów. Niniejszy artykuł zarysowuje ideę istotnej redukcji potrzebnych 
zasobów pamięciowych, zniekształcającej przy tym reprezentację oryginalnego stanu tylko nieznacznie lub 
wcale. W chwili obecnej, rozważane są nieujemne rzeczywiste amplitudy prawdopodobieństwa. 
 
Słowa kluczowe: obliczenia kwantowe, splątanie kwantowe, rozplątanie, rejestr kwantowy. 
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