PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Neural network prediction of buckling load of steel arch-shells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calculating the buckling load of structures is one of the main aspects of geometric structural instability. With reference to finite element software (ANSYS) and considering the weight of the structure as a constant load, the paper calculates the buckling load of steal arch shells as the main scope. Then, the article makes a prediction for the buckling load of steel arch shells applying 85 datasets prepared by the above mentioned method and using an artificial neural network by means of NeuroSolution 5.0 software. The radius of the periphery cylinder of an arch shell, the thickness of the shell and its internal angel are considered as inputs of construct models. Next, in order to attain an optimum model calculating and comparing the value of Root Mean Squared Error, RMSE, Mean Absolute Error, MAE and the coefficient of correlation, R2, for all 1 and 2-layer constructed models, a model having architecture 3-7-1 was found to be optimum. A high confirmed correlation with calculated buckling loads employing the finite element method and considering the calculated values of RMSE (0.0126), MAE (0.011) and the obtained value R2 (0.998) demonstrated high efficiency of a new developed neural network model.
Rocznik
Strony
477--484
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, University of Zanjan, Zanjan, Iran
  • Department of Civil Engineering, University of Zanjan, Zanjan, Iran
autor
  • Vilnius Gediminas Technical University, Faculty of Civil Engineering, Saul_etekio al.11, LT-10223, Vilnius, Lithuania
Bibliografia
  • [1] A.K. Kvedaras, et al., Stability and ductility of structures: Editorial, Journal of Civil Engineering and Management 16 (2) (2010) 155–158, http://dx.doi.org/10.3846/jcem.2010.15.
  • [2] W. Glabisz, et al., Stability of non-prismatic rods subjected to non-conservative loads: Original, Computers and Structures 46 (3) (1993) 479–486, http://dx.doi.org/10.1016/0045-7949(93) 90217-2.
  • [3] W. Glabisz, et al., Application of Hamilton’s law to the stability analysis of a double pendulum under nonconservative loads, Computers and Structures 53 (1) (1994) 143–153 http://dx.doi.org/10.1016/0045-7949(94)90137-6.
  • [4] I. Kreja, et al., Stability analysis of cylindrical composite shells in MSC/Nastran, Archives of Civil and Mechanical Engineering 5 (3) (2005) 31–41.
  • [5] A. Sabik, I. Kreja, et al., Stability analysis of multilayered composite shells with cut-outs, Archives of Civil and Mechanical Engineering 11 (1) (2011) 195–207.
  • [6] H.A. Mang, X. Jia, G. Hoefinger, et al., Hilltop buckling as the A and O in sensitivity analysis of the initial postbuckling behavior of elastic structures, Journal of Civil Engineering and Management 15 (1) (2009) 35–46, http://dx.doi.org/10.3846/1392-3730.2009.15.35-46.
  • [7] V. Sapalas, M. Samofalov, V. Saraskinas, et al., Fem stability analysis of tapered beam-columns, Journal of Civil Engineering and Management 11 (3) (2005) 211–216, http://dx.doi.org/10.1080/13923730.2005.9636352.
  • [8] R. Bjorhovde, et al., Evolution and state of the art of column stability criteria, Journal of Civil Engineering and Management 16 (2) (2010) 159–165, http://dx.doi.org/10.3846/jcem.2010.16.
  • [9] Y. Bai, Y. Wang, Y. Shi, et al., Design and stability analysis for an arch-shell hybrid structure, Singapore Cool Dry Conservatory, Journal of Advanced Materials Research 163-167 (2011) 557–561, http://dx.doi.org/10.4028/www.scientific.net/AMR.163-167.557.
  • [10] C.D. Goode, A. Kuranovas, A.K. Kvedaras, et al., Buckling of slender composite concrete-filled steel columns, Journal of Civil Engineering and Management 16 (2) (2010) 230–237 http://dx.doi.org/10.3846/jcem.2010.26.
  • [11] J.L. Batoz, et al., Curved finite elements and shell theories with particular reference to the buckling of a circular arch, International Journal for Numerical Methods in Engineering 14 (5) (1979) 774–779, http://dx.doi.org/10.1002/nme.1620140511.
  • [12] V. Krupka, Buckling and plastic punching of circular cylindrical shell due to saddle or lug loads, in: Proceedings of Buckling of Shell Structures, on Land, in the Sea, and in the Air, London, Elsevier Applied Science (1991) 11–20.
  • [13] J. Xue, M.S.H. Fatt, et al., Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure, Journal of Engineering Structures 24 (8) (2002) 1027–1034 http://dx.doi.org/10.1016/S0141-0296(02)00029-9.
  • [14] W.G. Davids, et al., In-plane load-deflection behavior and buckling of pressurized fabric arches, Journal of Structural Engineering 135 (11) (2009) 1320–1329, http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000068.
  • [15] R.V. Southwell, et al., On the general theory of elastic stability, Philosophical Transactions of the Royal Society of London, Series A 213 (1914) 187–202.
  • [16] S.P. Timoshenko, et al., Some stability problems of elasticity theory, Zeitschrift fur Angewandte Mathematik und Physik 58 (1910) 337–357 (Einige Stabilitatsrobleme der Elastizatstheorie).
  • [17] N.J. Hoff, et al., The perplexing behavior of thin cylindrical shells in axial compression, Israel Journal of Technology 4 (I) (1966) 1–28.
  • [18] B.O. Almroth, et al., Influence of edge conditions on the stability of axially compressed cylindrical shells, AIAA Journal 4 (I) (1966) 134–140.
  • [19] G.J. Simitses, D. Shaw, I. Sheinman, J. Giri, et al., Imperfection sensitivity of fibre-reinforced, composite, thin cylinders, Composites Science and Technology 22 (1985) 259–276.
  • [20] L.S. Beedle, et al., Stability of Metal Structures: A World View, 2nd Edition, Stability Research Council, USA, 1991.
  • [21] D. Bushnell, et al., Computerised Buckling Analysis of Shells, Martinus Nijhoff Publishers, Dordrecht, 1985.
  • [22] H.T.Y. Yang, S. Saigal, D.G. Liaw, et al., Advances of thin shell finite elements and some applications version I, Computers and Structures 35 (1990) 481–504.
  • [23] R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, et al., Concepts and Applications of Finite Element Analysis, 4th Ed., John Wiley and Sons, New York, 2002.
  • [24] S.M. Holzer, J.F. Davalos, C.Y. Huang, et al., A review of finite element stability investigations of spatial wood structures, Bulletin of the International Association for Shell and Spatial Structures 31 (2) (1990) 161–171.
  • [25] C.J. Earls, Observation on eigenvalue buckling analysis within a finite element context, in: Proceedings of the SSRC Annual Stability Conference, New Orleans, 2007.
  • [26] A.H. Alavi, A.H. Gandomi, A.K. Mollahassani, A. Heshmati, A. Rashed, et al., Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks, Journal of Plant Nutrition and Soil Science 173 (2010) 368–379.
  • [27] P. Malinowski, I. Polarczyk, J. Piotrowski, et al., Neural model of residential building air infiltration process, Journal of Civil Engineering and Management 12 (1) (2006) 83–88 http://dx.doi.org/10.1080/13923730.2006.9636377.
  • [28] W.S. McCulloch, W. Pitts, et al., A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics 5 (1988) 115–133.
  • [29] T. Behrens, H. Forster, T. Scholten, U. Steinrucken, E. Spies, M. Goldschmitt, et al., Digital soil mapping using artificial neural networks, Journal of Plant Nutrition and Soil Science 168 (2005) 21–33.
  • [30] J. Hoła, K. Schabowicz, et al., Application of artificial neural networks to determine concrete compressive strength based on non-destructive tests, Journal of Civil Engineering and Management 11 (1) (2005) 23–32, http://dx.doi.org/10.1080/13923730.2005.9636329.
  • [31] P. Malinowski, P. Ziembicki, et al., Analysis of district heating network monitoring by neural networks classification, Journal of Civil Engineering and Management 12 (1) (2006) 21–28, http://dx.doi.org/10.1080/13923730.2006.9636368.
  • [32] U. Dikmen, M. Sonmez, et al., An artificial neural networks model for the estimation of formwork labour, Journal of Civil Engineering and Management 17 (3) (2011) 340–347, http://dx.doi.org/10.3846/13923730.2011.594154.
  • [33] Y. Baalousha, T. Celik, et al., An integrated web-based data warehouse and artificial neural networks system for unit price analysis with inflation adjustment, Journal of Civil Engineering and Management 17 (2) (2011) 157–167, http://dx.doi.org/10.3846/13923730.2011.576806.
  • [34] Z. Waszczyszyn, Some new results in application of back-propagation neural network in structural and civil engineering, in: Proceedings of Advances in Engineering Computational Technology, Civil-Comp Press, Edinburgh, 1998, pp. 173–187.
  • [35] B. Brendel, E. Ramm, et al., Linear and nonlinear stability analysis of cylindrical shells, Computers and Structures 12 (4) (1980) 549–558.
  • [36] S.C. Chang, J.J. Chen, et al., Effectiveness of linear bifurcation analysis for predicting the nonlinear stability limits of structures, International Journal for Numerical Methods in Engineering 23 (5) (1986) 831–846.
  • [37] J. Singer, J. Arbocz, T. Weller, et al., Buckling Experiments: Basic Concepts, Columns, Beams, and Plates, vol. 1, John Wiley and Sons, 1998, 623 p.
  • 38] H. Adeli, et al., Neural networks in civil engineering: 1989–2000, Computer-Aided Civil and Infrastructure Engineering 16 (2001) 126–142.
  • [39] F. Rosenblatt, et al., The perceptron: a probabilistic model for information storage and organization in the brain, Psychological Review 65 (1988) 386–408.
  • [40] M.K.S. Alsmadi, K.B. Omar, S.A. Noah, et al., Back propagation algorithm: the best algorithm among the multi-layer perceptron algorithm, International Journal of Computer Science and Network Security 9 (2009) 378–383.
  • [41] R.H. Nielsen, et al., Neurocomputing, Picking the Human Brain, vol. 3, IEEE, 1998 36–41.
  • [42] M. Monjezi, A. Bahrami, A. Yazdian, et al., Predicting blast-induced ground vibration using various types of neural networks, Soil Dynamics and Earthquake Engineering 30 (2010) 1233–1236.
  • [43] J.S. Chandok, I.N. Kar, S. Tuli, et al., Estimation of furnace exit gas temperature (FEGT) using optimized radial basis and backpropagation neural networks, Energy Conversion and Management 49 (2008) 1989–1998.
  • [44] T.N. Singh, V. Singh, et al., An intelligent approach to prediction and control ground vibration in mines, Geotechnical and Geological Engineering 23 (2005) 249–262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51afe609-2c74-4f5d-a04c-d04ef1448bed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.