Influence of distillation time and distillation apparatus on the chemical composition and quality of *Lavandula angustifolia* Mill. essential oil

Aneta Wesołowska^{1*}, Dorota Jadczak², Karolina Zyburtowicz¹

¹West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Piastov Ave. 42, 71-065 Szczecin, Poland

²West Pomeranian University of Technology, Szczecin, Faculty of Environmental Management and Agriculture, Department of Horticulture, Słowackiego 17, 71-434 Szczecin, Poland

*Corresponding author: e-mail: aneta.wesolowska@zut.edu.pl

In the study, the influence of distillation time as well as distillation apparatus on the chemical composition and quality of lavender (*Lavandula angustifolia* Mill.) essential oil were investigated. Two different types of distillation apparatuses: Deryng (popular in Poland) and Clevenger-type (recommended by European Pharmacopoeia) were used for the isolation of the essential oil from dried lavender flowers (*Lavandulae flos*). Moreover, different distillation times (2, 3 and 4 hours) were also applied. The chemical composition of the isolated oils, determined by gas chromatography coupled with mass spectrometry (GC-MS), revealed the dominance of linalool (11.55–17.19%) and linalyl acetate (12.84–16.78%) in the all analyzed samples. Other important constituents were: caryophyllene oxide (5.66–7.35%), lavandulyl acetate (4.64–5.40%) and borneol (4.62–5.51%). On the basis of the obtained data it was proved that the distillation time and distillation apparatus affect the amounts of some constituents in the lavender oil.

Keywords: Lavandula angustifolia essential oil, distillation time, distillation apparatus, GC-MS, quality of lavender essential oil.

INTRODUCTION

Lavandula angustifolia Mill. (true lavender), a perennial shrub belonging to the Lamiaceae family, is cultivated all over the world due to its huge incorporation in perfumes, cosmetics, food and pharmaceutical industries^{1, 2}. Products derived from lavender are distributed globally in boutiques, grocesry stores, home stores and in online stores. The essential oil isolated from the flower heads exhibit antibacterial, antioxidant, antifungal, anti-depresive, anti-inflammatory, anticonvulsive and antiviral activity. Because of its characteristic and pleasant aroma, it is widely used in aromatherapy or massage^{3, 4}. Lavender oils and aqeous extracts can be found as an active ingredients in a variety of bath and body products as well as in a variety of household products. In addition to these applications, lavender oil is also used in the food industry as natural flavoring in baked goods, alcoholic and nonalcoholic beverages, puddings, chewing gum, candy and ice cream^{5, 6}.

The quality and commercial significance of the essential oil isolated from *L. angustifolia* depends on the levels of linalool, linalyl acetate and camphor in it. The oil with high content of linalool and linalyl acetate and low content of camphor is the most apreciated for the perfume and cosmetic industries, while this richer in camphor is mainly used in aromatherapy⁷. On the other hand, the percentage of these components in lavender oil can vary significantly depending on the cultivar, growing conditions, stage of plant development, storage conditions and even distillation conditions⁸.

Steam distillation is the most preferable technique for isolation of lavender oil on a commercial scale, hovewer, during this process, molecular rearrangements, hydratation of double bonds and hydrolysis of esters may occur. Moreover, there is no agreement in the literature as to the optimal distillation time for lavender oil extraction. If the distillation time is too long, then the essential oil may have an unpleasant smell. In turn, too short distillation time may result in the lack of the higher boiling components in the essential $oil^{6, 9-10}$.

Hydrodistillation is a traditional method employed in the extraction of essential oils from aromatic plants on a laboratory scale¹¹. This process may be carried out in a glass Clevenger-type or Deryng apparatus. Both devices are recommended by Polish Pharmacopoeia for determination of essential oil content in the plant material¹²⁻¹³.

Our previous research indicated that the steam distillation time had a significant effect on the amounts of linalool, linalyl acetate and α -terpineol in lavender oil¹⁴. Therefore, we decided to investigate the influence of the type of distillation apparatus and duration of hydrodistillation on the chemical composition and quality of essential oil isolated from dried *L. angustifolia* flowers.

MATERIAL AND METHODS

Essential oils isolation

The plant material (Lavandulae flos) used for essential oils preparation was originated from Poland (Wielkopolska), Herb Factory 'Kawon-Hurt' (Gostyń). According to the producer, 1 g of the product contains 1g Lavandula angustifolia Mill. In brief, 20 g of dried lavender flowers in a 1000 mL round bottom flask together with 400 mL of distilled water was subjected to hydrodistillation using Deryng apparatus recommended by Polish Pharmacopoeia VII¹². The hydrodistillation process was also performed with use of Clevenger-type apparatus, which is recommended by both, Polish Pharmacopoeia VII¹³ as well as European Pharmacopieia¹⁵. In order to determine the infuence of the duration of distillation on essential oil content and its composition, three different distillation times (2, 3 and 4 hours) were applied. The obtained lavender oils were separated from water, dried over anhydrous sodium sulphate, filtered and stored in refrigerator prior to GC-MS analysis. Each distillation was repeated three times. The yield of the essential oil,

expressed as (% v/w) in Table 1, was calculated using the following equation¹⁶:

$$Y_{EO} \left(\% \text{ v/w}\right) = \frac{\text{volume of extracted essential oil (mL)}}{\text{mass of dry plant material (g)}} \ge 100$$

Gas chromatography-mass spectrometry (GC-MS) analysis

The analyses of the chemical composition of lavender essential oil samples were carried out using an Hewlett Packard 6890 gas chromatograph with a Hewlett Packard 5973 Mass Selective Detector and 6890 Series Injector. The GC was equipped with HP-5MS capillary column (30 x 0.25 mm i.d., film thickness 0.25 µm). Helium was used as a carrier gas at a flow rate of 1.2 mL/min. The injector temperature was 250 °C, the transfer line temperature was 280 °C, and the ion source temperature was 230 °C. The GC oven temperature was programmed: initial temperature of the column was 45 °C, then it was increased to 200 °C at a rate of 5 °C/min (kept constant for 10 min), and then heated up to a final temperature of 250 °C at a rate of 5 °C/min (kept constant for 20 min). The injection volumes were $1 \,\mu L$ (20 mg of essential oil dissolved in 1.5 mL of dichloromethane). The split injection was conducted with a split ratio of 5:1. The mass spectra were recorded at 70 eV (EI) and were scanned (2.94 scans/s) in the range 50–550 m/z. The total running time for a single sample was 71 min.

Lavender oils constituents were identified by comparison of their mass spectra with those stored in the MS databases (Wiley, NIST 2002), as well as by comparison of their mass spectra with authentic compounds (β -pinene, p-cymene, limonene, camphor, menthone, carvone, carvacrol, thymol) available in our laboratory (Fluka, Aldrich). The identity of compounds was also confirmed by comparison of their calculated retention indices (relative to n-alkanes: C₇-C₃₀, Supelco, Bellefonte, PA USA; on a HP-5MS column) with those reported in the NIST Chemistry WebBook (https://webbook.nist.gov/ chemistry/) and the literature^{1, 17}.

Relative percentage amounts of the essential oil constituents were evaluated from the total peak area (TIC) by apparatus software (MSD ChemStation).

Statistical analysis

The analysis of variance (ANOVA) was applied for the comparison of means, while significant differences were calculated according to the post-hoc Tuckey's HSD (honestly significant difference) test at a significance level of p = 0.05, using the Statistica 13 (TIBCO Software INC. StatSoft, Poland). The statistical analysis of the results given in Table 4 was conducted for constituents of content greather than 1% of the lavender essential oil.

RESULTS AND DISCUSSION

The essential oils obtained from dried lavender flowers using two types of distillation apparatuses at different distillation times, were found to be yellow liquids with characteristic floral-herbal smell. The results presented in Table 1 indicate that the time of essential oil distillation of *L. angustifolia*, both in the Deryng and Clevenger-type apparatus, had no significant effect of its content. Hovewer, the amounts of lavender oil obtained in the Deryng apparatus was higher as compared with the Clevengertype apparatus (1.17% and 0.86%, respectively).

The content of essential oil in *Lavandulae flos* generally depends on cultivar, geographical location, altitude, soil as well as climate conditions, propagation, morphology and ranges from 0.5 to $9.62\%^7$. Our results are in agreement with those described in the literature. Although, the pharmaceutical requirements (European Pharmacopoeia 7.0) of minimum 1.3% essential oil in lavender flowers was not met in case of studied plant material.

The identified components of *L. angustifolia* oils, their retention indices (RI) and relative percentage concentrations are listed in Table 2 and 3, in order of their elution form a HP-5MS column.

A total of 121 different constituents were identified in the lavender essential oils isolated by hydrodistillation in the Deryng apparatus (Table 2). GC-MS analysis revealed that the major constituents of the oils were linalyl acetate (12.84–15.04%), linalool (11.55–13.14%), caryophyllene oxide (6.42–7.35%) and lavandulyl acetate (4.76–5.40%). Other predominant components were borneol (4.62–4.93%) and τ -cadinol (3.53–3.93%). Interestingly, small amounts of α -citral (0.09%), α -selinene (0.05%), β -bisabolene (0.04%) and α -eudesmol (0.31%) were detected only in the oil obtained by hydrodistillation conducted for three hours.

The essential oils obtained by hydrodistillation in the Clevenger-type apparatus consisted of 128 compounds in total (Table 3). Similarly, linalool (14.64–17.19%), linalyl actetae (14.50–16.78%), caryophyllene oxide (5.66–6.07%) and lavandulyl acetate (4.64–5.35%) were the major components. The isolated oils were also rich in borneol (4.88–5.51%), β-caryophyllene (3.14–3.64%) and eucalyptol (2.16–3.09%).

Generally, the major constituents of all of the tested lavender oil samples were the same. However, compounds such as: β -thujene, α -terpinolene, lavandulol, nerol, geraniol, citronellyl formate, thymol, undecanal, hexyl hexanoate, α -cedrene, isospathulenol, β -sinensal, isopropyl myristate and methyl stearate were present only in the oils isolated in the Clevenger-type apparatus. Whereas, longifolene, geranylacetone, alloaromadendrene, germacrene D, α -selinene, β -bisabolene, tridecanal, humulene epoxide epi- α -muurolol, hexyl salicylate and (2E, 6E)-farnesol were detected only in the oils obtained in the Deryng apparatus.

The statistical analysis of the results presented in Table 4 shows that the type of distillation apparatus affected the percentage content of some lavender oil constituents. The highest concentrations of linalool (17.19%)

Table 1. Essential oil content in lavender flowers in dependence on distillation time and distillation apparatus

	Essential oil content % (v/w)										
Der	yng appara	atus	Moonvoluo	Clevenger apparatus			Moon voluo	Distillation time mean value			
Di	istillation tin	ne		Distillation time		Distillation time mean value			i value		
2 h	3 h	4 h		2h 3h 4h			2 h	3 h	4 h		
1.17a	1.12a	1.21a	1.17a	0.85b	0.82b	0.92b	0.86b	1.01ab	0.97b	1.06a	

Means followed by the same letter are not significantly different at p = 0.05

Table 2. Percentage co	omposition of la	wender oil in d	ependence on	distillation	time in 1	the Deryng	apparatus
------------------------	------------------	-----------------	--------------	--------------	-----------	------------	-----------

Nia	Common and	Dt [min]	ы	DI		Distillation ti	me
NO.	Compound	Rt [min]	RI _{Exp.}	KI _{Lit.}	2h	3h	4h
1.	α-Pinene	6.58	934	934	0.13	0.17	0.19
2.	Camphene	6.94	949	949	0.19	0.23	0.25
3.	β-Pinene	7.66	977	978	0.09	0.10	0.11
4.	3-Octanone	7.71	979	979	0.15	0.15	0.17
6.	β-Myrcene	7.94	991	992	0.51	0.64	0.76
7.	3-Octanol	8.15	996	996	_*	0.14	0.14
8.	3-Carene	8.47	1008	1009	-	0.10	0.11
9.	Hexyl ethanoate	8.62	1014	1015	0.29	0.30	0.32
10.		8.71	1017	1017	0.21	0.14	0.19
12	n-Cymene	8.93	1022	1023	0.09	0.09	0.10
13.	Limonene	9.05	1029	1020	0.33	0.33	0.37
14.	Eucalyptol (1,8-Cineole)	9.11	1031	1031	1.75	1.79	1.90
15.	(Z)-β-Ocimene	9.30	1038	1038	0.35	0.36	0.40
16.	(E)-β-Ocimene	9.59	1048	1048	0.41	0.49	0.51
17.	γ-Terpinene	9.89	1059	1060	0.12	0.14	0.15
19	trans-Linalool oxide	10.20	1089	1089	2.00	2.13	2.34
20.	Linalool	11.08	1102	1103	13.14	11.55	11.85
21.	Nonanal	11.17	1105	1105	0.92	1.07	1.39
22.	1-Octen-3-yl acetate	11.37	1112	1112	1.26	1.10	1.23
23.	(Z)-p-Menth-2-en-1-ol	11.66	1122	1123	0.04	0.21	0.24
24.	allo-Ocimene	11.70	1124	1124	0.29	0.16	0.18
26.	(E)-Pinocarveol	12.17	1140	1132	0.21	0.40	0.30
27.	cis-Sabinol	12.24	1143	1143	0.14	0.14	0.14
28.	Camphor	12.32	1146	1146	0.99	0.92	0.95
29.	Camphene hydrate	12.40	1148	1148	_	0.11	0.11
30.	Menthone	12.51	1152	1153	0.12	0.12	0.12
31.	Pinocatyone	12.59	1164	1100	0.40	0.41	0.43
33.	Borneol	12.00	1167	1164	4.93	4.62	4.74
34.	1-Nonanol	13.14	1175	1175	0.29	0.26	0.29
35.	Terpinen-4-ol	13.25	1178	1178	2.29	2.06	2.08
36.	p-Cymen-8-ol	13.37	1183	1183	0.40	0.39	0.40
37.	Cryptone g Terpipeel	13.50	1187	1187	1.58	1.52	1.55
39	Myrtenal	13.80	1192	1192	0.30	0.32	0.34
40.	<i>trans</i> -Dihydrocarvone	13.88	1201	1201	0.30	0.05	_
41.	Verbenone	14.14	1210	1211	0.80	0.48	0.46
42.	(E)-Carveol	14.42	1220	1220	0.23	0.24	0.23
43.	(Z)-Carveol	14.56	1229	1229	1.01	0.97	1.01
44. 45		14.07	1237	1237	0.11	0.11	0.10
46.	Carvone	15.10	1245	1246	0.30	0.30	0.28
47.	Linalyl acetate	15.42	1257	1258	15.04	13.31	12.84
48.	α-Citral	15.84	1272	1273	_	_	0.09
49.	Phellandral	15.90	1277	1276	0.16	0.30	0.34
50.	DOMYI ACETATE	16.25	1287	1287	0.69	U.69 / Q1	0.00
52	Carvacrol	16.66	1302	1302	0.36	0.42	0.40
53.	Bicycloelemene	17.41	1331	1330	0.12	0.12	0.13
54.	δ-Elemene	17.57	1337	1339	-	0.06	0.06
55.	Piperitenone	17.66	1341	1343	0.29	0.22	0.26
56.	a-Cubebene	17.96	1352	1351	0.23	0.10	0.11
57.	Nervl acetate	10.04	1355	1365	0.13	1 10	0.05
59.	Decanoic acid	18.56	1375	1374	0.16	0.15	0.17
60.	3-Methyltridecane	18.65	1378	1377	_	0.10	0.11
61.	Geranyl acetate	18.69	1384	1385	2.19	2.10	2.03
62.	β-Bourbonene	18.97	1391	1391	_	_	0.09
63.	β-Elemene	19.16	1398	1397	0.18	0.14	0.10
64.	Longifolene	19.37	1406	1407	-	0.03	 0.21
66	β-Carvophyllene	19.01	1423	1423	2.92	3.16	3.37
67.	<i>trans</i> -α-Bergamotene	20.15	1438	1438	0.17	0.23	0.27
68.	Aromadendrene	20.40	1448	1449	-	0.07	0.08
69.	Geranylacetone	20.45	1450	1452	_	_	0.05
70.	(ヒ)-β-⊢arnesene	20.63	1457	1458	0.91	0.96	0.99

No	Compound	Pt [min]	PL	PL	Distillation time		
INO.	Compound		I VIExp.	INILit.	2h	3h	4h
71.	Alloaromadendrene	20.72	1461	1462	0.06	0.07	0.08
72.	Germacrene D	21.18	1479	1480	_	0.11	0.10
73.	γ-Muurolene	21.31	1484	1485	0.32	_	_
74.	β-Selinene	21.38	1487	1488	0.10	0.12	0.12
75.	α-Selinene	21.62	1497	1498	_	_	0.05
76.	β-Bisabolene	21.93	1510	1511	_	_	0.04
77.	Tridecanal	22.02	1514	1513	-	0.04	0.05
78.	γ-Cadinene	22.10	1517	1517	0.85	0.97	1.02
79.	β-Sesquiphellandrene	22.20	1521	1523	0.89	0.88	0.80
80.	δ-Cadinene	22.31	1526	1528	0.08	0.27	0.27
81.	Cadina-1,4-diene	22.53	1535	1536	0.18	0.20	0.20
82.	α-Cadinene	22.69	1542	1544	_	0.04	0.09
83.	α-Calacorene	22.79	1546	1546	0.31	0.34	0.31
84.	Germacrene B	23.04	1557	1558	0.64	0.56	0.50
85.	(E)-Nerolidol	23.26	1566	1565	0.24	0.26	0.22
86.	Dendrasaline	23.53	1578	1579	0.21	0.22	0.20
87.	Spathulenol	23.63	1582	1582	0.24	0.25	0.22
88.	Caryophyllene oxide	23.78	1588	1589	7.35	7.18	6.42
89.	Humulene epoxide	24.17	1605	1606	-	0.14	0.13
90.	Tetradecanal	24.36	1613	1614	0.40	0.40	0.39
91.	Humulene epoxide II	24.48	1619	1619	0.49	0.57	0.53
92.	γ-Eudesmol	24.66	1627	1627	0.35	0.43	0.46
93.	epi-α-Cadinol	24.89	1637	1638	0.18	0.33	0.33
94.	epi-α-Muurolol	24.97	1641	1642	0.36	0.60	0.60
95.	т-Cadinol	25.05	1644	1644	3.53	3.93	3.57
96.	α-Muurolol	25.27	1654	1654	0.30	0.36	0.34
97.	Valerianol	25.38	1659	1659	0.22	-	0.08
98.	α-Cadinol	25.43	1661	1663	0.79	1.53	1.37
99.	α-Eudesmol	25.53	1666	1667	—	1	0.31
100.	Cadalene	25.73	1675	1675	1.56	1.91	1.74
101.	1-Tetradecanol	25.83	1679	1679	0.32	0.42	0.38
102.	Hexyl salicylate	25.91	1683	1683	0.08	0.22	0.19
103.	α-Bisabolol	26.01	1687	1687	0.50	0.63	0.56
104.	epi-α-Bisabolol	26.13	1692	1692	1.01	1.23	1.13
105.	Heptadecane	26.34	1702	1700	0.17	0.27	0.25
106.	5-Ethyl-5-Methylpentadecane	26.46	1707	1710	0.17	0.23	0.21
107.	Pentadecanal	26.58	1713	1714	0.39	0.59	0.63
108.	(E,E)-Farnesal	26.70	1719	1719	0.36	0.50	0.47
109.	Oplopanone	26.97	1731	1735	_	0.18	0.15
110.	(2E,6E)-Farnesol	27.21	1743	1743	_	0.02	0.02
111.	α-Sinensal	27.33	1748	1752	0.71	0.88	0.79
112.	Myristic acid	27.82	1771	1771	0.19	0.28	0.25
113.	(E)-α-Atlantone	27.94	1777	1777	0.08	0.16	0.16
114.	Phenanthrene	28.13	1786	1784	-	0.11	0.13
115.	Octadecane	28.47	1801	1800	0.15	0.24	0.20
116.	Hexadecanal	28.60	1808	1811	0.11	0.21	0.20
117.	Hexahydrofarnesyl acetone	29.30	1842	1843	0.45	0.60	0.59
118.	1-Nonadecene	30.39	1896	1894	0.05	0.19	0.18
119.	Palmitoleic acid	31.57	1952	1953	0.28	0.39	0.35
120.	Palmitic acid	31.71	1959	1960	-	_	0.02
121.	1-Octadecanol	34.99	2089	2090	0.12	0.13	0.16
	Total identified [%]				99.43	99.53	99.92

Rt – retention time

RI_{Exp.} – retention indices relative to n-alkanes (C7-C30) on a HP-5 MS capillary column

RI_{Lit.} – literature retention indices

–* – not detected

and linalyl acetate (16.78%) were noticed in the lavender oil obtained by 2-hour distillation in the Clevenger-type apparatus. However, the percentage content of caryophyllene oxide was higher in the lavender oil obtained in the Deryng apparatus. Moreover, essential oil derived from lavender flowers distilled in the Deryng apparatus was richer in *cis*- and *trans*-linalool oxide, neryl acetate, α -cadinol, cadalene and epi- α -bisabolol. For lavandulyl acetate the most effective was a 2 hours distillation time, less effective was 3 hours and the least effective was 4 hours, both in the Deryng and Clevenger-type apparatus. A slightly higher percentage of camphor was recorded in the oil isolated from lavender flowers by 2-hour distillation in the Clevenger-type apparatus. Interestingly, the content of this compound in the lavender oil isolated in the Deryng apparatus was almost equal, regardless of the duration of distillation.

According to our analysis, a shorter distillation time (2 hours) of lavender flowers may result in an essential oil richer in linalool, 1-octen-3-yl acetate, terpinen-4-ol, linalyl acetate, lavandulyl acetate and geranyl acetate. A higher content of γ -cadinene, τ -cadinol, α -cadinol and cadalene was noted in the essential oil obtained by twoand three-hour distillation. Hovewer, the concentrations of these constituents varied irregulary depending on the duration of distillation. In case of such constituents as eucalyptol, *cis*- and *trans*-linalool oxide, borneol, cryptone, α -terpineol, neryl acetate, β -caryophyllene, (E)- β -

Table 3. Percentage c	composition of l	avender oil in de	pendence on di	istillation time	in the C	levenger-type ap	paratus
-----------------------	------------------	-------------------	----------------	------------------	----------	------------------	---------

			DI.			Distillation Time	Э
No.	Compound	Rt [min]	RI _{Exp.}	RI _{Lit.}	2 h	3 h	4 h
1.	(E)-2-Hexen-1-ol	4.95	864	864	_*	-	0.05
2.	α-Thujene	6.32	928	928	0.03	-	Π
3.	α-Pinene	6.58	934	934	0.30	0.25	0.24
4.	Camphene	6.94	949	949	0.47	0.32	0.28
5.	β-Thujene	7.43	970	971	0.06	-	-
6.	β-Pinene	7.66	977	978	0.34	0.41	0.41
7.	3-Octanone	7.90	987	988	0.68	0.49	0.48
8.	β-Myrcene	7.94	991	992	0.84	0.44	0.39
9.	6-Methyl-5-hepten-2-ol	7.99	992	993	-	0.08	0.13
10.	3-Octanol	8.15	996	996	0.13	0.17	0.17
11.	3-Carene	8.47	1008	1009	0.15	0.13	0.13
12.	Hexyl ethanoate	8.62	1014	1015	0.56	0.46	0.41
13.	α-Terpinene	8.71	1017	1017	0.24	0.23	0.14
14.	m-Cymene	8.86	1022	1023	0.18	0.15	0.13
15.	p-Cymene	8.93	1025	1026	0.77	0.60	0.58
16.		9.05	1029	1030	0.55	0.41	0.38
17.	Eucalyptol (1,8-Cineole)	9.11	1031	1031	3.09	2.25	2.16
18.	(Z)-B-Ocimene	9.30	1038	1038	0.47	0.37	0.36
19.	(E)-p-Ocimene	9.59	1048	1048	0.60	0.42	0.40
20.	reipinene kie Sabinene bydroto	9.09 10.11	1009	1000	0.23	0.19	0.19
21.		10.11	1009	1070	1.00	0.04	0.09
22.	transl inglool oxide	10.20	1073	1073	1.00	1.00	1.73
23.		10.72	1009	1009	0.12	1.41	1.32
24.		11.00	11033	1093	17 10	11 65	11.64
20.	Nonanal	11.00	1102	1103	1 1 1 2	14.00	1 21
20.	1-Octon-3-vl acetate	11.17	11100	1100	1.12	1.13	1.31
27.	(Z) n Menth 2 en 1 ol	11.66	112	112	0.18	0.27	0.30
20.	(2)-p-Mehai-2-en-1-oi	11.00	1122	1123	0.10	0.27	0.30
29.		11.70	1124	1124	0.23	0.10	0.17
31	(E)-Pinocarveol	12 17	1140	1140	0.42	0.22	0.31
32	cis-Sabinol	12.17	1143	1143	0.00	0.09	0.12
33	Camphor	12.24	1146	1146	1 43	1 25	1 21
34	Camphene hydrate	12.02	1148	1148	0.15	0.13	0.11
35.	Menthone	12.51	1152	1153	0.10	0.05	0.09
36.	Nerol oxide	12.59	1155	1155	0.62	0.52	0.56
37.	Pinocarvone	12.85	1164	1164	0.20	0.12	0.12
38.	Borneol	12.93	1167	1168	4.88	5.34	5.51
39.	Lavandulol	12.96	1171	1171	_	0.09	0.12
40.	1-Nonanol	13.14	1175	1175	0.05	0.25	0.23
41.	Terpinen-4-ol	13.25	1178	1178	2.46	2.09	2.15
42.	p-Cymen-8-ol	13.37	1183	1183	0.37	0.39	0.34
43.	Cryptone	13.50	1187	1187	1.70	1.59	1.54
44.	α-Terpineol	13.62	1192	1192	2.56	2.49	2.46
45.	Myrtenal	13.80	1198	1197	0.36	0.36	0.34
46.	trans-Dihydrocarvone	13.88	1201	1201	0.19	0.31	0.23
47.	Verbenone	14.14	1210	1211	0.77	0.93	0.62
48.	(E)-Carveol	14.42	1220	1220	0.05	0.33	0.31
49.	(Z)-Carveol	14.56	1229	1229	0.17	1.10	1.13
50.	Nerol	14.59	1230	1231	0.43		
51.	Pulegone	14.87	1237	1237	0.16	0.11	0.13
52.	Cuminal	15.00	1242	1242	0.99	0.82	0.85
53.	Carvone	15.10	1245	1246	0.36	0.27	0.28
54.	Geraniol	15.16	1251	1252	0.11		0.03
55.	Linalyl acetate	15.42	1257	1258	16.78	14.78	14.50
56.	α-Citral	15.84	1272	1273	-	_	0.13
57.	Phellandral Citere allul formato	15.90	12//	12/6	0.19	0.27	0.29
58.	Citronellyl formate	15.95	12/9	1282	0.14	0.07	0.10
59.	Bornyi acetate	10.25	1287	1287	0.97	0.86	0.82
0U. 61		10.34	1291	1292	0.30	4.80	4.04
60 60		10.30	1295	1290		0.13	0.12
02. 62		10.00	1302	1200	0.03	0.20	0.02
61 61	Biovoloelemeno	10.70	1221	1309	0.07	0.37	0.00
65		17.41	1227	1227	0.13	0.17	0.17
66		17.57	1337	13/13	0.09	0.09	0.00
67	α-Cubebene	17.00	1352	1351	0.17	0.01	0.23
68	Thymol acetate	18.0/	1355	1357	0.17	0.10	0.10
69	Nervl acetate	18.28	1364	1365	0.13	0.84	0.84
70	Decanoic acid	18.56	1375	1374	<u> </u>	0.19	0.18
71.	3-Methyltridecane	18.65	1378	1377	_	0.11	0.12

NL-		Dt Invial	ы	ы		Distillation Time	Э
NO.	Compound	Rt [min]	RI _{Exp.}	RI _{Lit.}	2 h	3 h	4 h
72.	Geranyl acetate	18.69	1384	1385	2.01	1.60	1.52
73.	Hexyl hexanoate	18.74	1386	1386	-	0.05	0.11
74.	β-Bourbonene	18.97	1391	1391	0.02	_	_
75.	β-Elemene	19.16	1398	1397	0.14	0.15	0.14
76.	α-Cedrene	19.48	1415	1413	0.09	0.14	0.15
77.	<i>cis</i> -α-Bergamotene	19.61	1416	1417	0.10	0.03	0.10
78.	β-Caryophyllene	19.78	1423	1423	3.14	3.31	3.64
79.	<i>trans</i> -α-Bergamotene	20.15	1438	1438	0.28	0.28	0.27
80.	Aromadendrene	20.40	1448	1449	0.08	0.10	0.06
81.	(E)-β-Farnesene	20.63	1457	1458	0.79	0.98	1.01
82.	γ-Muurolene	21.31	1484	1485	0.32	0.39	0.15
83.	β-Selinene	21.38	1487	1488	0.11	0.12	0.13
84.	γ-Cadinene	22.10	1517	1517	0.93	1.04	1.12
85.	β-Sesquiphellandrene	22.20	1521	1523	-	0.80	0.78
86.	δ-Cadinene	22.31	1526	1528	0.14	0.12	0.22
87.	Cadina-1,4-diene	22.53	1535	1536	0.24	0.22	0.16
88.	α-Cadinene	22.69	1542	1544	0.17	-	-
89.	α-Calacorene	22.79	1546	1546	0.19	0.25	0.27
90.	Germacrene B	23.04	1557	1558	0.49	0.57	0.53
91.	(E)-Nerolidol	23.26	1566	1565	0.15	0.18	0.17
92.	Dendrasaline	23.53	1578	1579	0.19	0.20	0.19
93.	Spathulenol	23.63	1582	1582	0.11	0.26	0.25
94.	Caryophyllene oxide	23.78	1588	1589	6.07	5.90	5.66
95.	Hexadecane	23.96	1601	1600	0.20	—	—
96.	Tetradecanal	24.36	1613	1614	0.26	0.36	0.31
97.	Humulene epoxide II	24.48	1619	1619	0.19	0.46	0.42
98.	γ-Eudesmol	24.66	1627	1627	0.21	0.25	0.24
99.	Isospathulenol	24.77	1632	1633	-	0.13	0.20
100.	epi-α-Cadinol	24.89	1637	1638	-	0.44	0.44
101.	T-Cadinol	25.05	1644	1644	1.25	3.03	3.05
102.	a-Muurolol	25.27	1654	1654	0.51	0.26	0.26
103.	Valerianol	25.38	1659	1659	0.52	_	0.15
104.		25.43	1661	1663	0.05	1.02	0.90
105.	a-Eudesmol	25.53	1666	1667	_	0.24	0.15
106.		25.73	1675	1675	-	1.40	1.47
107.	1-letradecanol	25.83	1679	1679	0.25	0.26	0.27
108.	α-Bisabolol	26.01	1687	1687	0.06	0.32	0.33
109.		26.13	1692	1692	0.27	0.14	0.13
110.	β-Sinensal	26.15	1693	1694	0.75	0.73	0.71
111.	nepladecane	20.34	1702	1700	0.03	0.04	0.12
112.	D-Euriyi-D-ivieunyipentadecane	20.40	1707	1710	0.05	0.18	0.17
113.		26.58	1713	1714	-	0.20	0.41
114.		20.70	1/19	1725	0.14	0.30	0.30
110.		20.97	1731	1730	-	0.50	0.10
110.	d-Sinensal	27.33	1748	1752	0.59	0.58	0.59
117.		21.09	1/0/	1704	0.04	0.12	- 0.10
110.		27.02	1777	1777	0.05	0.12	0.10
120		21.94	1801	1800	0.00	0.13	0.14
120.	Hevadecanal	20.47	1001	1811	_	0.13	0.14
1∠1. 122	leopropyl myrietyate	20.00	1832	1831	0.07	0.10	0.19
122.	Hevebydrofernesyl acotopo	20.90	1842	18/2	0.07	0.42	0.50
123.		20.00	1806	180/	0.27	0.42	0.50
124.		31.59	1050	1054	0 15	0.03	0.05
120.	Palmitic acid	31 71	1050	1960	0.10	0.37	0.40
120.	1-Octadecanol	31.71	2080	2000	0.18	0.21	0.20
128	Methyl stearate	36.13	2131	2131	0.10	0.21	0.22
120.	Total identified [%]	30.13	2131	2131	00.25	90.72	99.61
			1	1	55.25	55.12	55.01

Explanations see Table 2.

farnesene, caryophyllene oxide and epi- α -bisabolol, time of distillation had no significant effect on their content in lavender oil.

Our results are in line with those published by Baj et al.¹⁸, who stated that the differences in percentage composition of the essential oils obtained using Deryng and Clevenger-type apparatus can be explained by the differences in the construction of both devices.

Literature survey shows that both the content and composition of the essential oils of *Rosa damascena*, *Mentha piperita*, *Juniperus scopulorum*, *Acorus calamus*, *Lavandula angustifolia* Mill., *Foeniculum vulgare* Mill., *Origanum vulgare* L. and *Origanum minutiflorum* were affected by the duration of distillation^{10, 19-22}. The results obtained in the current study are similar to those reported previously by other researchers.

The quality of lavender oil is determined by two factors: a pleasant aroma and a desired content of some constituents²³. Moreover, the ratio of linalyl acetate to linalool should be greather than 1 in a good quality oil¹⁴. According to ISO requirements, the accetable ranges for the main components of *L. angustifolia* oil are: linalyl acetate (25–47%), linalool (20–45%), *cis*- β -ocimene (1–10%), *trans*- β -ocimene (0.5–6%), 3-octanone

Essential oil	Deryng apparatus			Mean value	Clav	/enger appa	ratus	Mean	Distillation time mean value		an value
constituent	Distillation time			inioan value	Distillation time			value	Biotiliat		
oonotituont	2 h	3 h	4 h		2 h	3 h	4 h		2 h	3 h	4 h
Eucalyptol	1.75 b	1.79 b	1.90 b	1.81 b	3.09 a	2.25 b	2.16 b	2.50 a	2.42 a	2.02 a	2.03 a
cis-Linalool oxide	2.86 a	2.75 a	2.94 a	2.85 a	1.88 b	1.86 b	1.73 b	1.82 b	2.37 a	2.30 a	2.34 a
<i>trans</i> -Linalool oxide	2.24 a	2.17 a	2.36 a	2.26 a	1.40 b	1.41b	1.32 b	1.38 b	1.82 a	1.79 a	1.84 a
Linalool	13.14 bc	11.55 c	11.85 c	12.18 b	17.19 a	14.65 b	14.64 b	15.49 a	15.17 a	13.10 b	13.25 b
Nonanal	0.92 c	1.07 bc	1.39 a	1.13 b	1.12 bc	1.13 bc	1.31 ab	1.19 a	1.02 b	1.10 b	1.35 a
1-Octen-3-yl acetate	1.26 bc	1.10 c	1.23 bc	1.20 b	1.93 a	1.44 b	1.38 bc	1.59 a	1.60 a	1.27 b	1.31 b
Camphor	0.99 c	0.92 c	0.95 c	0.96 b	1.43 a	1.25 ab	1.21 b	1.30 a	1.21 a	1.09 b	1.08 b
Borneol	4.93 ab	4.62 b	4.74 ab	4.76 b	4.88 ab	5.34 ab	5.51 a	5.24 a	4.91 a	4.98 a	5.13 a
Terpinen-4-ol	2.29 ab	2.06 b	2.08 b	2.14 a	2.46 a	2.09 b	2.15 ab	2.24 a	2.38 a	2.08 b	2.12 b
Cryptone	1.58 a	1.52 a	1.55 a	1.55 a	1.70 a	1.59 a	1.54 a	1.61 a	1.64 a	1.56 a	1.54 a
α-Terpineol	2.84 a	2.57 a	2.59 a	2.67 a	2.56 a	2.49 a	2.46 a	2.50 a	2.70 a	2.53 a	2.53 a
(Z)-Carveol	1.01 a	0.97 a	1.01 a	1.00 a	0.17 b	1.10 a	1.13 a	0.80 b	0.59 b	1.04 a	1.07 a
Linalyl acetate	15.04 b	13.31 cd	12.84 d	13.73 b	16.78 a	14.78 bc	14.50 bcd	15.35 a	15.91 a	14.04 b	13.67 b
Lavandulyl acetate	5.40 a	4.91 ab	4.76 b	5.03 a	5.35 a	4.80 b	4.64 b	4.93 a	5.38 a	4.86 b	4.70 b
Neryl acetate	1.18 a	1.10 ab	1.08 ab	1.12 a	0.94 bc	0.84 c	0.84 c	0.87 b	1.06 a	0.97 a	0.96 a
Geranyl acetate	2.19 a	2.10 a	2.03 a	2.11 a	2.01 a	1.60 b	1.52 b	1.71 b	2.10 a	1.85 b	1.78 b
β-Caryophyllene	2.92 a	3.16 a	3.37 a	3.15 a	3.14 a	3.31 a	3.64 a	3.36 a	3.03 a	3.23 a	3.51 a
(E)-β-Farnesene	0.91 a	0.96 a	0.99 a	0.95 a	0.79 a	0.98 a	1.01 a	0.93 a	0.85 a	0.97 a	1.00 a
γ-Cadinene	0.85 a	0.97 a	1.02 a	0.95 a	0.93 a	1.04 a	1.12 a	1.03 a	0.89 b	1.01 ab	1.07 a
Caryophyllene oxide	7.35 a	7.18 ab	6.42 abc	6.98 a	6.07 bc	5.90 c	5.66 c	5.88 b	6.71 a	6.54 a	6.04 a
т-Cadinol	3.53 a	3.93 a	3.57 a	3.68 a	1.25 b	3.03 a	3.05 a	2.45 b	2.39 b	3.48 a	3.31 a
α-Cadinol	0.79 c	1.53 a	1.37 ab	1.23 a	0.05 d	1.02 abc	0.90 bc	0.66 b	0.42 b	1.28 a	1.13 a
Cadalene	1.56 ab	1.91 a	1.74 ab	1.74 a	_*	1.40 b	1.47 b	0.96 b	0.78 b	1.66 a	1.61 a
epi-α-Bisabolol	1.01 a	1.23 a	1.13 a	1.12 a	0.27 b	0.14 b	0.13 b	0.18 b	0.64 a	0.68 a	0.63 a

 Table 4. Content of main essential oil constituents in lavender flowers in dependence on distillation time in the Deryng and Clevenger apparatus

Means followed by the same letter are not significantly different at p = 0.05; -* - not detected

(0-5%), camphor (0-1.5%), 1,8-cineole (0-3%), limonene (0-1%), terpinen-4-ol (0-8%), lavandulyl actetae (0-8%), lavandulyl (0-3%) and α -terpineol $(0-2\%)^{23-24}$.

All the studied lavender oil samples contained less linalyl acetate, linalool, *cis*- and *trans*- β -ocimene than the range called for by ISO standard. They also contained higher level of α -terpineol (2.46–2.84%), than called for in the specification (0–2%). Although, the levels of 1,8-cineole (eucalyptol), limonene, 3-octanone, camphor, terpinen-4-ol and lavandulyl acetate were in the regulated ranges in the all investigated samples.

Based on the results presented in Table 5 it can be concluded that the higher quality lavender oils were obtained by hydrodistillation in the Deryng apparatus. The linalyl acetate to linalool ratio in the essential oils distilled in the Clevenger-type apparatus was slightly lower than that in the Deryng apparatus and only in case of 3-hour distillation was higher than 1. Moreover, the content of camphor (Table 4) in the essential oils obtained in the Deryng apparatus did not exceed 1%, which also confirms their better quality.

The aspect related to the aroma quality of lavender oil is very important from the industrial point of view. Linalyl acetate is responsible for the floral-woody scent of the oil, while 1,8-cineole and camphor give it a sharper note. The presence of camphor in an amount exceeding 1.2% reduces the quality of the aroma, giving it a fresher accent²⁵.

The chemical composition of the essential oil isolated by hydrodistillation from dried flowers of *L. angustifolia* cultivated in Wielkopolska was previously assessed by Śmigielski et al.²⁶ Linalool (30.6%), linalyl acetate (14.2%), geraniol (5.3%), β -caryophyllene (4.7%) and lavandulyl acetate (4.4%) were the major constituents

 Table 5. Comparison of the linalyl acetate to linalool ratio for lavender oils isolated in the Deryng and Clevenger-type apparatus

Distillation	Linalool	Linalyl	Ratio (linalyl					
time	(%)	acetate (%)	acetate/linalol)					
Deryng apparatus								
2 h	13.14	15.04	1.14					
3 h	11.55	13.31	1.15					
4 h	11.85	12.84	1.08					
	Cleve	enger apparatus	5					
2 h	17.19	16.78	0.98					
3 h	14.65	14.78	1.01					
4 h	14.64	14.50	0.99					

of oil. Other compounds, in a lesser amount were terpinen-4-ol (3.4%), α -terpineol (2.7%), 1,8-cineole (2%) and lavandulol (1.6%). Moreover, these authors stated that only *cis*- β -ocimene, linalyl acetate and α -terpineol in Polish lavender oil are out of ranges of the ISO requirements. In addition, the study by Śmigielski and Prusinowska²⁷ has shown that linalool (27.3–34.7%), linalyl acetate (19.7–22.4%), lavandulyl acetate (4.5–5.7%), ocimene (1.9–2.9%), terpinen-4-ol (1.1–2.0%), lavandulol (0.6–0.8%), camphor (0.2–0.3%) and cineol (0.2–0.5%) characterized the essential oils isolated from *L. angustifolia* cultivated in Poland.

Our results are partly in line with the findings of Śmigielski et al.²⁶ Interestingly, the content of linalool and linalyl acetate found in our oils was also lower than that reported by Śmigielski and Prusinowska²⁷ in Polish lavender. Such differences in the chemical composition of lavender oils are most likely due to different weather conditions during lavender growing or fertilization.

CONCLUSIONS

In this study, the influence of the type of distillation apparatus and duration of hydrodistillation on essential oil content and composition of L. angustifolia were investigated. It was observed that increasing distillation time did not result in higher essential oil content, both in the Deryng and Clevenger-type apparatus. It was revealed that linalool, linalyl acetate, caryophyllene oxide, lavandulyl acetate and borneol dominated in the all analysed oil samples. The obtained oils did not conform to the requirements of ISO for the chemical composition of L. angustifolia Mill. The main reason for such nonconformity was the percentage of linalool, linalyl acetate and ocimenes. Additionally, it was proved that in order to obtain the essential oil with the highest content of linalool and linalyl acetate, the process of hydrodistillation should by carried out by 2 hours in the Clevenger-type apparatus. If a low-camphor oil (below 1.2%) is desirable, lavender flowers need to be distilled for 2 hours in the Deryng apparatus.

LITERATURE CITED

 Dong, G., Bai, X., Ailila, A., Aisa, H.A. & Maiwulanjiang, M. (2020). Study on lavender oil chemical compositions by GC-MS and improved pGC. *Molecules* 25(14), 3166. DOI: 10.3390/molecules25143166.

2. Koriem, K.M.M. (2021). Lavandulae aetheroleum oil: a review on phytochemical screening, medicinal applications, and pharmacological effects. *Biointer. Res. Appl. Chem.*, 11(3), 9836–9847. DOI: 10.33263/BRIAC113.98369847.

3. Cavanagh, H.M.A. & Wilkinson, J.M. (2002). Biological activities of lavender essential oil. *Phytother. Res.*, 16, 301–308.

4. Wells, R., Truong, F., Adal, A.M., Sarker, L.S. & Mahmoud, S.S. (2018). *Lavandula* essential oils: a current review of applications in medicinal, food, and cosmetic industries of lavender. *Nat. Prod. Commun.*, 13(10), 1403–1417.

5. Jianu, C., Pop, G., Gruia, A.T. & Horhat, F.G. (2013). Chemical composition and antimicrobial activity of essential oils of lavender (*Lavandula angustifolia*) and lavandin (*Lavandula x intermedia*) grown in Western Romania. *Int. J. Agric. Biol.* 15(4), 772–776.

6. Karapandzova, M., Cvetkovikj, I., Stefkov, G., Stoimenov, V., Crvenov, M. & Kulevanova, S. (2012). The influence of duration of the distillation of fresh and dried flowers on the essential oil composition of lavandin cultivated in Republic of Macedonia. *Maced. Pharm. Bull.*, 58(1), 31–38. DOI: 10.33320/MACED.PHARM.BULL.2012.58.004.

7. Aprotosoaie, A.C., Gille, E., Trifan, A., Luca, V.S. & Miron, A. (2017). Essential oils of *Lavandula* genus: a systematic review of their chemistry. *Phytochem. Rev.*, 16, 761–799.

DOI: 10.1007/s11101-017-9517-1.

8. Rathore, S. & Kumar, R. (2022). Essential oil content and compositional variability of *Lavandula* species cultivated in the Mid Hill conditions of the Western Himalaya. *Molecules.*, 27(11), 3391. DOI: 10.3390/molecules27113391.

9. Marincas, O. & Feher, I. (2018). A new cost-effective approach for lavender essential oils quality assessment. *Ind. Crops Prod.* 125, 241–247. DOI: 10.1016/j.indcrop.2018.09.010.

10. Zheljazkov, V.D., Cantrell, Ch.L., Astatkie, T. & Jeliazkova, E. (2013). Distillation time effect on lavender essential oil yield and composition. J. Oleo Sci., 62(4), 195–199. DOI: 10.5650/jos.62.195.

11. Barros, M., Redondo, L., Rego, D., Serra, C. & Miloudi, K. (2022). Extraction of essential oils from plants by hydrodistillation with pulsed electric fields (PEF) pre-treatment. *Appl. Sci.*, 12, 8107. DOI: 10.3390/app12168107.

12. Polish Pharmacopoeia VI, PTFarm. Warszawa 2002.

13. Polish Pharmacopoeia VII, PTFarm. Warszawa 2006.

14. Wesołowska, A., Jadczak, D. & Grzeszczuk, M. (2010). Influence of distillation time on the content and composition of essential oil isolated from lavender (*Lavandula angustifolia* Mill.). *Herba Pol.*, 56(3), 24–36.

15. European Pharmacopoeia 7.0. Council of Europe Publishing. Strasbourg 2011.

16. Bagheri, H., Manap, M.Y.B.A. & Solati, Z. (2014). Response surface methodology applied to supercritical carbon extraction of *Piper nigrum* L. essential oil. *LWT - Food Sci. Technol.* 57, 149–155. DOI: 10.1016/j.lwt.2014.01.015.

17. Babushok, V.I., Linstrom, P.J. & Zenkevich, I.G. (2011). Retention indices for frequently reported compounds of plant essential oils. *J. Phys. Chem.*, 40(4), 043101-1.

18. Baj, T., Ludwiczuk, A., Sieniawska, E., Skalicka-Woźniak, K., Widelski, J., Zięba, K. & Głowniak, K. (2013). GC-MS analysis of essential oils from *Salvia officinalis* L.: comparison of extraction methods of the volatile components. *Acta Pol. Pharm.*, 70(1), 35–40.

19. Kumar, R., Sharma, S., Sharma, S. & Kumar, N. (2016). Drying methods and distillation time affects essential oil content and chemical compositions of *Acorus calamus* L. in the western Himalayas. *J. Appl. Res. Med. Aromat. Plants.*, 3, 136–141. DOI: 10.1016/j.jarmap.2016.06.001.

20. Zheljazkov, V.D., Astatkie, T. & Schlegel, V. (2012). Distillation time changes oregano essential oil yield and composition but not the antioxidant or antimicrobial activities. *Hort. Sci.*, 47, 777–784.

21. Zheljazkov, V.D., Horgan, T., Astatkie, T. & Schlegel, V. (2013). Distillation time modifies essential oil yield, composition and antioxidant capacity of fennel (*Foeniculum vulgare* Mill.). *J. Oleo Sci.*, 62, 665–672.

22. Toker, R., Golukcu, M. & Tokgoz, H. (2017). Effects of distillation times on essential oil composition of *Origanum minutiflorum* O. Schwarz Et. And P. H. Dawis. *J. Essent. Oil Res.* 29(4), 330–335. DOI: 10.1080/10412905.2016.1276026.

23. Pokajewicz, K., Białoń, M., Svydenko, L., Fedin, R. & Hudz, N. (2021). Chemical composition of the essential oil of the new cultivars of *Lavandula angustifolia* Mill. bred in Ukraine. *Molecules* 26, 5681. DOI: 10.3390/molecules26185681.

24. Wang, M., Zhao, J., Ali, Z., Avonto, C. & Khan, I.A. (2021). A novel approach for lavender essential oil authentication and quality assessment. *J. Pharm. Biomed. Anal.*, 199, 114050. DOI: 10.1016/j.jpba.2021.114050.

25. Crisan, I., Ona, A., Varban, D., Muntean, L., Varban, R., Stoie, A., Mihaiescu, T. & Morea, A. (2023). Current trends for lavender (*Lavandula angustifolia* Mill.) crops and products with emphasis on essential oil quality. *Plants.* 12, 357. DOI: 10.3390/plants12020357.

26. Śmigielski, K., Raj, A., Krosowiak, K. & Gruska, R. (2009). Chemical composition of the essential oil of *Lavandula angustifolia* cultivated in Poland. *J. Essent. Oil Bear. Plants.* 12(3), 338–347. DOI: 10.1080/0972060X.2009.10643729.

27. Prusinowska, R. & Śmigielski, K.B. (2014). Composition, biological properties and therapeutic effects of lavender (*Lavandula angustifolia* L.). A review. *Herba Pol.*, 60(2), 56–66.