
e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 25–33, DOI 10.5277/e-Inf130103

A Knowledge-Based Perspective for Software
Process Modeling

Noureddine Kerzazi∗, Mathieu Lavallée∗, Pierre-N. Robillard∗
∗Laboratoire de Recherche en Génie Logiciel, 2500 chemin de Polytechnique,

Montr[Pleaseinsert\PrerenderUnicode{Ãľ}intopreamble]al H3T 1J4, Canada, École Polytechnique de Montréal
Noureddine.Kerzazi@Polymtl.ca, Mathieu.Lavallee@Polymtl.ca, Pierre.Robillard@Polymtl.ca

Abstract
As the acquisition and sharing of knowledge form the backbone of the software development
process, it is important to identify knowledge discrepancies between the process elements. Explicit
representation of the knowledge components within a software process model can provide a means
to expose these discrepancies. This paper presents an extension of the Software and System Process
Engineering Metamodel (SPEM), to be used as a new knowledge modeling layer. The approach,
which is based on ontologies for knowledge representation, constitutes an explicit method for
representing knowledge within process models. A concept matching indicator shows the state of
the process model in terms of the concept gaps for each task within the process. This indicator
could lead to more informed decision making and better management of the associated risks, in
terms of team competency, documentation quality, and the training required to mitigate them.

1. Introduction

Software engineering is knowledge-intensive [1],
and so the acquisition and sharing of knowledge
form the conceptual backbone of software process
modeling. However, the latest version of SPEM
[2], the Object Management Group (OMG)’s de
facto standard devoted to software process mod-
eling, does not support this knowledge concern.
We tackle the issue in this paper by presenting
an extended SPEM framework which focuses on
the knowledge-oriented perspective of process
modeling. Our approach responds to the need
to provide process engineers with the means to
perform knowledge assessments within processes,
and we do this by integrating knowledge con-
cepts within SPEM-based software process mod-
eling. This knowledge-oriented perspective has
been integrated into our previous work related
to the implementation of a domain-specific lan-
guage for software process modeling (DSL4SPM
tool) [3].

In addition, the paper tackles the issue of
knowledge discrepancies in the software process
model, with the purpose of providing an indica-
tor of a knowledge gap relating to any activity
represented in that model.

The benefit of introducing knowledge con-
cepts into software process modeling is to en-
able the identification of knowledge gaps between
prescribed activities and the available resources.
When such a gap is identified, the project man-
ager can evaluate the risks it represents, and
provide the developers with additional training
as required [4]. The objective of this SPEM exten-
sion is thus to provide process engineers with a
mean to document domain knowledge constraints
directly into their process models.

The paper is organized as follows: Section 2,
Related Works, presents theoretical background
related to ontologies and knowledge representa-
tion. Section 3, Extension of SPEM, describes
the SPEM extension developed to enable knowl-
edge integration and gap measurement. Section

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_7/eInformatica2013Art3.pdf


26 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

4 presents the visualization of the knowledge gap
measure, along with its interpretations. Finally,
section 5 presents concluding remarks and sug-
gestions for future work.

2. Related Works

The background theory of this work relates to
three main areas: software process modeling,
knowledge management theories, and the use
of ontologies. Knowledge management has been
extensively studied, in the social sciences litera-
ture in particular. The purpose of this section is
to highlight the salient concepts of the theories
on which this approach is based.

2.1. Knowledge Management Theories

According to Davenport and Prusak [5], Knowl-
edge Management (KM) can be defined as a
process that relates to three issues: knowledge
creation, knowledge representation, and knowl-
edge sharing. This subsection highlights represen-
tative theories from the fields of management and
the cognitive sciences, management theories em-
phasizing knowledge creation and representation,
and cognitive theories emphasizing knowledge
representation and storage.

In considering the management point of view,
Nonaka & Takeuchi [6] identify two types of
knowledge: tacit (T) and explicit (E). Tacit
knowledge is personal and context-specific. It can-
not, by definition, be explicitly expressed by an
individual, but it frames his behavior. In contrast,
explicit knowledge is externalized knowledge, and
it supports communication, either formally or
informally, and does so independently of who
“knows”. Within a software process, tacit knowl-
edge resides in roles, while explicit knowledge
resides in artifacts.

In considering the cognitive point of view,
Novak and Canas [7] define knowledge as a struc-
tured set of interrelated concepts. They argue
that learning involves the assimilation (i.e. inter-
nalization) of new concepts into existing cogni-
tive structures. This theory is also embraced by
cognitive psychologists, who assert that we learn

by assimilating new concepts and propositions
into existing cognitive structures, rather than
through rote memorization [8]. So, representing
knowledge in a structure of concepts [9] is in
agreement with how cognitive psychologists be-
lieve we store knowledge in the brain.

Moreover, concepts can be organized in an
ontology to simplify manipulation, sharing and
reuse. An ontology is defined as “a formal explicit
description of concepts in a domain” [10].

According to Anderson [11], there are two
kinds of knowledge: declarative knowledge and
procedural knowledge. Declarative knowledge is
the factual or conceptual knowledge that a person
has. It can be described and shared with others
(e.g. facts about a programming language). Pro-
cedural knowledge is the knowledge of how to per-
form tasks, and focuses more on action than on
information. This second type of knowledge is dif-
ficult to describe, but is nevertheless important,
particularly in problem-solving (e.g. the experi-
ence of using a debugger). Robillard [1] presents
an integrated view of various knowledge concepts
in software engineering. Even though there is an
abundance of theoretical knowledge models in the
literature, there are few methods for integrating
knowledge into the software process modeling
field, as reported by Bjørnson & Dingsøyr in
their systematic review [12]. With the recogni-
tion that knowledge is the primary source of an
organization’s innovation potential, our aim in
this work is to superpose the knowledge-oriented
perspective over the activity-oriented layer of
the software process model, in order to provide
a method for representing and managing knowl-
edge in the software development process. The
first step is to extend the SPEM-based processes
with attributes related to knowledge. In this way,
cognitive theory is used to represent:
– the knowledge required to carry out a task

(considered as the core of the action),
– the knowledge provided by the artifacts and

roles linked to this task.
The second step is to compare the knowledge

required for the SPEM elements, such as artifacts,
roles, and tasks, in order to identify gaps. The
final step is to visualize the knowledge matching
between tasks.



A Knowledge-Based Perspective for Software Process Modeling 27

2.2. Ontology for Knowledge
Representation

We chose an ontological representation among
other formalisms for three reasons. First, cogni-
tive psychologists, like Ausubel [8], affirm that
people do not learn by rote memorization, but
rather by summarizing, structuring, and relat-
ing concepts, and then assimilating them into
existing cognitive structures. Based on this the-
ory, the ontology domain was developed with
the main aim of building knowledge reposito-
ries using a tree of interrelated concepts [13].
Second, we want to represent knowledge bases
in a modular way, so that the model would be
extendable and scalable to accommodate new
items in the future. Third, we need a standard
representation (e.g. RDF/XML or OWL 2.0) to
be able to share knowledge bases and reuse them
in different contexts.

Recently, more and more researchers have
been using ontologies to understand software
processes [14, 15]. According to Anquetil et
al. [14], software system maintenance is a
knowledge-intensive task, which can be sup-
ported with an ontology, and such an ontology
can provide a good understanding of the applica-
tion. The authors argue that many of the difficul-
ties associated with software maintenance origi-
nate from knowledge management problems, and
they propose a technique for knowledge extrac-
tion. Ferreira et al. [15] propose the integration
of ontologies into the model driven architecture
(MDA) paradigm.

In this work, we implement an interface, in
addition to the basic process modeling one, to
import multiple external ontologies.

3. Extension of SPEM

SPEM 2.0 is the OMG’s standard for software
process modeling [2]. It is based on UML and
is dedicated to describing the components of
software processes. According to its specification,
a software process is a set of activities, each
of which is composed of one or more tasks per-
formed by an abstract active entity, called a Role.

The Role is responsible for one or more tangible
entities, called Work Products. Roles describe
the responsibilities and a set of skills to facilitate
their assignment to real people. Work Products
are pieces of information produced by, or used
by, Tasks.

However, SPEM supports activity-oriented
modeling, which focuses on a structural break-
down of activities, and not knowledge modeling.
There is therefore a need to extend SPEM to
take into account a knowledge-oriented modeling
perspective.

3.1. Integrating Knowledge Component
into SPEM

Figure 1 shows the conceptual integration of
the knowledge component into SPEM, the gray
classes coming from the SPEM 2.0 specification.
Note that Work Product Use is the generic term
for the inputs and outputs of tasks, such as Ar-
tifacts, in the specification. The concept-based
knowledge repository is structured as a tree of
the ConceptNode element.

RoleUseWorkProductUse TaskUse

MethodContentUse

BreakdownElement

UseRelation

ConceptNode

Properties

Figure 1. Extension of SPEM to support ontology.
Elements in grey derive from the SPEM
specifications. The extension is in white

The ConceptNode class represents a con-
cept of the repository’s tree-structured ontology.
A node is associated with a list of properties.
The ConceptNode is linked to process elements
through the Relationship class. The Relationship
class has one property, which enables the mod-



28 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

Ontologie(s)Product
Ontology

Project
Ontology

Process
Ontology

Figure 2. The specific form used to indicate the knowledge concepts needed for a task

eler to assign concepts to the process elements
in a declarative way, a procedural way, or both.
In this model, concepts do not yet have prop-
erties. The only relationship possible between
concepts is an inheritance relationship,“is-a” .
Future extensions may permit the expression of
more properties and relationships.

According to Nosek and Roth [16], a visual
representation of knowledge is clearly better for
comprehension and conceptualization than a tex-
tual one. This paper presents visual modeling
instead of the textual descriptions common in a
number of specialized knowledge tools.

Figure 2 shows the specific form that allows
knowledge modeling. The task is the core element
of the process model; the process engineer has to
indicate which knowledge concepts are needed to
carry out each task, and, for each concept, the
relationship with the process element (e.g. proce-
dural and/or declarative) must be specified. The
process engineer retrieves the related concepts
required for each task from the concept ontology.

As shown in the upper-left corner of Figure
2, the ontology is organized according to three
dimensions: product, project, and process. This
multi-dimensional ontology approach (i.e. merg-
ing of ontologies) was motivated by validation
experiments. The feedback of the participants re-

vealed the need for a different level of knowledge.
Some participants wanted a process ontology (e.g.
role skills, artifacts, and guidance). Others asked
for a project management ontology (e.g. assign-
ment of human resources to roles, competency
management). Still others were interested in a
product ontology (e.g. API documentation, pro-
gramming languages, techniques for understand-
ing the source code, etc.). The results showed the
need for a flexible and articulated tool, which
can accommodate ontologies for multiple levels
of knowledge.

3.2. Concept Maps for Knowledge
Representation

The following four steps are required to evaluate
the concept mapping between SPEM elements,
which refers to process entities such as Activities,
Roles, and Artifacts, as defined in the SPEM
specification.
1. Parameterization. The first step is to spec-

ify the ontology, which is the formalization
of the concept structure. The process engi-
neer first loads a default or adapted concept
tree. Then, the project team gathers and
organizes the knowledge concepts relevant
to the project context. As seen in Figure 2,



A Knowledge-Based Perspective for Software Process Modeling 29

three concept trees are proposed by default,
each one linked to an abstract level of knowl-
edge (process, project, and product). Each
concept may have a finer-grained structure
represented with a number of attributes.

2. Modeling. For every task in the process
model, references are set to a subset of con-
cepts required for achieving the task. For
every concept, the process engineer specifies
the way in which the concept is required, fol-
lowing Anderson’s model: declarative and/or
procedural. For all incoming links to each task
(e.g. from Work Products, Roles, Guidance),
references are set to a subset of concepts
provided by this element.

3. Compute mismatch. For every task, the
system searches all incoming links, retrieves
the concepts provided, and compiles the re-
sults. A concept required by the task is con-
sidered fully mapped if it can be provided
by at least one of the input elements linked
to this task. It is considered inadequately
mapped if it is partially mapped (e.g. pro-
vided as declarative, when it is required to
be procedural). Finally, it is considered not
mapped if it is not provided by any SPEM
element linked to this task.

4. Visualize the results. The concept match-
ing indicator displays the results of concept
mapping (as shown in Figure 3 below, which
depicts knowledge mismatches). The user can
visualize the resulting mismatches between
prescribed knowledge and the available re-
sources.

3.3. Algorithm for Knowledge Mapping

A formalism based on the conventional Vector
Space Model (VSM) [17] is used to enable a sim-
ple visualization of the knowledge mismatch ob-
served. VSM is used to compute the similarity be-
tween the knowledge required to carry out each of
the prescribed tasks and the knowledge provided
by the available roles, artifacts, and guidance. Co-
sine similarity measures are used to compute the
similarity between two vectors of concepts char-
acterized by n attributes (n-dimensional space).
The results of this mapping are used to build the

concept matching indicator. The first step is to
link the process model to the ontology file, which
contains a set of n concepts (Cn) relevant to
the whole process. Thus, the knowledge required
to carry out a given task ti is represented by a
vector: →

ti= {C1, C2, ..., Cn}∗
→
I (1)

where Ii = 1 if the concept is required, and 0 if
not. According to Anderson [10], concepts can be
classified in two categories: procedural or declara-
tive, both of which are denoted by a vector (p,d).
To simplify the illustration, we present only the
Anderson attribute for the knowledge concept,
which will be sufficient for most practical pur-
poses. Let t′T be the vector representing a set of
typed concepts required for task T:
→
t′T = {C1(p, d)t′ , C2(p, d)t′ , ..., Cn(p, d)t′}∗

→
I
(2)

The next step is to link the source elements
(i.e. other linked SPEM elements, such as Role,
Artifact, and Guidance) of each task. These el-
ements gather the concepts provided, instead
of the concepts required. Let p′E be the vector
representing a set of typed concepts provided by
a given element E:
→
p′E= {C1(p, d)p′ , C2(p, d)p′ , ..., Cn(p, d)p′}∗

→
I
(3)

The similarity between the vector t′T and the
p′E of each of the elements provided is obtained
by the cosine calculation. This gives a way of
interpreting the quality of the mapping between
the set of required knowledge concepts for each
Task and the set of knowledge concepts provided.

‖ p′E ‖ =
√
C1(p, d)2

p′ + ...+ Cn(p, d)2
p′

‖ t′T ‖ =
√
C1(p, d)2

t′ + ...+ Cn(p, d)2
t′

D =

√√√√ n∑
i=1

(Ci(p, d)t′ − Ci(p, d)p′)2

cos θ = ‖ p
′
E ‖2 + ‖ t′T ‖2 −D2

2 ‖ p′E ‖‖ t′T ‖

(4)

where the cosine values vary between 0 and 1:



30 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

p’ values t’ values Deviation
C1(p)+C2(d)+C3(p,d) C1(p)+C2(d)+C3(d) 30◦

C1(p,d)+C2(d)+C3(d) C1(p,d)+C2(d)+C3(d) 0◦

C1(p,d)+C2(p)+C3(p) C1(p)+C2(p,d)+C3(d) 60◦

Table 1. Calculation example

– If the required and provided concept vectors
coincide completely, which means a perfect,
complete concept mapping, the cosine is equal
to 0.

– If the two vectors have no concepts in com-
mon, it means that all the concepts are un-
mapped and/or unused, and the cosine is
equal to 1.

– Otherwise, the result mapping should be be-
tween 0 and 1.
The cosine angle values range between 0◦ and

90◦. To improve readability all angle values are
doubled, which enables a two quadrants (180◦)
representation, as shown in Figure 3.

Table 1 provides some examples of the calcu-
lation method.

4. Concept Matching Visualization
Examples

As illustrated in Figure 3, the graph is divided
into three zones (dark grey, medium grey, and
light grey). An arrow pointing toward the right
and within the light grey zone indicates a good
match. An arrow pointing toward the left and
within the dark grey zone indicates a poor match.
The size of these colored zones is customizable,
however, and the modeler can indicate the ac-
ceptance threshold for each zone. Each arrow
represents a task of the process. The angle of the
arrow represents the degree of knowledge match-
ing for the given task. For example, the Test
Plan Writing task (a horizontal arrow pointing
to the right) is completely mapped, which means
that all the concepts required for this task are
provided, while the UI Specification task (a hori-
zontal arrow pointing to the left) presents a com-
plete mismatch between the prescribed concepts
required to perform this task and the concepts
available within the team resources. There can
be as many zones as needed by the project.

4.1. Acceptable Match

The Behavioral Model Creation task, shown in
Figure 3, is in the acceptable zone. This task
is concerned with the creation of use cases, se-
quence diagrams, state diagrams, etc. To per-
form this task, a modeling language concept (C1)
is required for both declarative and procedural
knowledge. Declarative knowledge is needed to
understand the theory behind this modeling lan-
guage and procedural knowledge will enable the
role to perform the task. Similarly, an analysis
technique concept (C2) is required. A guideline
concept (C3) is also required, since the diagrams
produced must follow the templates of the or-
ganization. Basic declarative knowledge on the
requirement elicitation technique (C4) is also re-
quired since the input of this task is the require-
ments document. The t′T vector of this task is
therefore:
→
t′T =

→
C1 (p, d)t′+

→
C2 (p, d)t′+

→
C3 (p, d)t′+

→
C4 (d)t′

(5)
It is found that this is not fully consistent

with the concepts provided to the task. The roles
are proficient in terms of the modeling language
(C1), as they both have declarative knowledge
and procedural experience. This is, however, a
transformation task, requiring the transforma-
tion from requirements into diagrams. The roles
are not familiar with this challenge, but hands-on
training with a professional is planned. Declar-
ative and procedural support for the analysis
technique (C2) is therefore ensured. The require-
ments document presents declarative facts on the
guideline to be used (C3). Is is also well enough
detailed as to ensure that the requirements elic-
itation technique (C4) is well defined. The p′E
vector of this task is therefore:
→
p′E=

→
C1 (p, d)p′+

→
C2 (p, d)p′+

→
C3 (d)p′+

→
C4 (d)p′

(6)



A Knowledge-Based Perspective for Software Process Modeling 31

The angle is then measured between the two
vectors. Formula 7 shows the vectors in coordi-
nate form, grouped by concepts, as well as the
cosine and angle calculations.

→
t′T = {(1, 1)t′ ; (1, 1)t′ ; (1, 1)t′ ; (0, 1)t′}

→
p′E = {(1, 1)p′ ; (1, 1)p′ ; (0, 1)p′ ; (0, 1)p′}

cos θ = ‖ p
′
E ‖2 + ‖ t′T ‖2 −D2

2 ‖ p′E ‖‖ t′T ‖

= 6 + 6− 1
2 ∗
√

6 ∗
√

6
' .92

θ ' 22◦

(7)

This angle has been multiplied by two in Figure
3 to facilitate the visualization on a half-plane
instead of a quadrant.

The measure shows that the concept match-
ing is acceptable, albeit not perfect. The lack
of procedural knowledge for the guideline con-
cept implies that the diagrams might not fol-
low the prescribed format appropriately. The
main concepts are, however, correctly covered,
which confirms that this task should not present
a knowledge challenge.

4.2. Unacceptable Match

The task Test Cases Redaction shown in Figure 3
is in the inacceptable zone. This task builds test
cases from the test plan and the architectural
models for the application. Formula 8 presents
the mismatch measure, where C1 is testing tech-
nique, C2 is programming language, C3 is pro-
gramming technique, C4 is modeling language
and C5 is guideline. Programming is a critical
concept here because the test cases are written
in the programming language of the application.
Good tests must also be tailored to the applica-
tion itself, requiring the primary role to read and
understand the code.

The resource assigned to the role for the Test
Cases Redaction task was not a competent pro-
grammer. This creates a serious issue for this
task, which will probably create poor quality
test cases, if anything at all. This problem is not

obvious to the process designer as processes focus
on the flow of data, and not on the knowledge
required to handle this data.

4.3. Discussion on the Examples

These two examples show the risks faced by
the project manager. An example presented by
Jensen and Scacchi [18] shows that processes de-
signed with only workflows in mind can overlook
critical details. In their case, a process defined
in a rich hypermedia presentation overlooks the
workload of the Release Manager, resulting in a
process bottleneck. The authors manage to find
the problem through process simulation, but it
could also be found through knowledge analy-
sis. The Release Manager is required to produce
many different documents but is not supported in
this work. This will results in long delays between
releases, as the Release Manager must acquire
all required knowledge prior to producing each
document.

5. Concluding Remarks and Future
Work

This paper proposes a SPEM extension describ-
ing a new approach to concept mismatch iden-
tification in software process development. This
approach enables the visualization of knowledge
discrepancies in software process modeling. Such
visualization provides new insights into key prac-
tices from the knowledge management viewpoint.
An ontological approach coordinates knowledge
representation in each SPEM element by linking
the process model to one or more ontologies,
according to the level of abstraction needed.

The concept matching indicator presents the
state of the process model in terms of knowl-
edge and the degree of deviation of each task
within the process. This indicator could lead
to more informed decision making; for example,
in the recruitment of new competencies or the
addition of more roles to support the primary
role performing the task at hand. As a result,
the knowledge-oriented view complements the



32 Noureddine Kerzazi, Mathieu Lavallée, Pierre-N. Robillard

Figure 3. An example of the concept matching indicator

activity-oriented view, thereby fostering a better
understanding of complex processes.

Future work will focus on organizational
methods that support knowledge creation and
propagation related to knowledge flows among
software process models. The goal will be to
study the propagation of knowledge throughout
all the phases of the software process.

It will also seek ways to better integrate the
expressivity of common ontological languages
like RDF and OWL into our mismatch identifi-
cation mechanism. This would expand our cur-
rent tree-structured approach to resemble more
flexible structures like the OWL-based SKOS
structures.

Acknowledgment

We thank Olivier Gendreau for providing the
project data used for our post-analysis. This
work was partly supported by the “Fonds de
Recherche sur la Nature et les Technologies”
council of Québec (FQRNT) under Grant 127037
and NSERC grants A0141 and 361163.

References

[1] P.-N. Robillard, “The role of knowledge in
software development,” Communications of the

ACM, Vol. 42, No. 1, January 1999, pp. 87–93.
[2] OMG, “Software & systems process engineering

meta-model specification version 2.0,” http://
www.omg.org/spec/SPEM/2.0/, 2008, accessed:
10/Aug/2012.

[3] N. Kerzazi and P.-N. Robillard, “Multi-perspec-
tive software process modeling,” in 8th ACIS In-
ternational Conference on Software Engineering
Research, Management and Applications (SERA
2010), 2010.

[4] R. Martinho, D. Domingos, and J. Varajao,
“Concept maps for the modelling of controlled
flexibility in software processes,” IEICE Trans-
actions on Information and Systems, Vol. E93-D,
No. 8, August 2010, pp. 2190–2197.

[5] T. H. Davenport and L. L. Prusak, Working
Knowledge: How Organizations Manage What
They Know. Harvard Business School Press,
1998.

[6] T. Nonaka and H. Takeuchi, The Knowledge-Cre-
ating Company: How Japanese Companies Cre-
ate the Dynamics of Innovation. New York:
Oxford University Press, 1995.

[7] J. D. Novak and A. J. Cańas, “The the-
ory underlying concept maps and how to
construct them,” http://cmap.ihmc.us/
publications/researchpapers/theorycmaps/
theoryunderlyingconceptmaps.htm, 2000,
accessed: 10/Aug/2012.

[8] D. P. Asubel, The psychology of meaningful ver-
bal learning. New York: Grune & Stratton,
1963.

[9] Y. Wang, “On concept algebra and knowl-

http://www.omg.org/spec/SPEM/2.0/
http://www.omg.org/spec/SPEM/2.0/
http://cmap.ihmc.us/publications/researchpapers/theorycmaps/theoryunderlyingconceptmaps.htm
http://cmap.ihmc.us/publications/researchpapers/theorycmaps/theoryunderlyingconceptmaps.htm
http://cmap.ihmc.us/publications/researchpapers/theorycmaps/theoryunderlyingconceptmaps.htm


A Knowledge-Based Perspective for Software Process Modeling 33

edge representation,” in 5th IEEE International
Conference on Cognitive Informatics, 2006, pp.
320–231.

[10] N. F. Noy and D. L. McGuiness, “A guide to
creating your first ontology,” Stanford University,
Technical Report SMI-2001-0880, 2001.

[11] J. R. Anderson, M. Matessa, and C. Lebiere,
“ACT-R: a theory of higher level cognition and its
relation to visual attention,” Human Computer
Interaction, Vol. 12, No. 4, 1997, pp. 439–462.

[12] F. Bjørnson and T. Dingsøyr, “Knowledge man-
agement in software engineering: A systematic
review of studied concepts, findings and research
methods used,” Inf. Softw. Technol., Vol. 50,
No. 11, October 2008, pp. 1055–1068.

[13] J. R. Anderson, The Architecture of Cognition.
Harvard University Press, 1983.

[14] N. Anquetil, “Software maintenance seen as a
knowledge management issue,” Information and
Software Technology, Vol. 49, No. 5, May 2007,

pp. 515–529.
[15] N. Ferreira and R. J. Machado, “An ontol-

ogy-based approach to model-driven software
product lines,” in 4th International Confer-
ence on Software Engineering Advances (ICSEA
2009), 2009, pp. 559–564.

[16] J. T. Nosek and I. Roth, “A comparison of formal
knowledge representation schemes as communi-
cation tools; predicate logic vs semantic network,”
International Journal of Man-Machine Studies,
Vol. 33, No. 2, August 1990, pp. 227–239.

[17] G. Salton and C. S. Yang, “A vector space model
for automatic indexing,” Communications of
the ACM, Vol. 18, No. 11, November 1975, pp.
613–620.

[18] C. Jensen and W. Scacchi, “Experience in discov-
ering, modeling, and reenacting open source soft-
ware development processes,” in International
Software Process Workshop, 2005.


	Introduction
	Related Works
	Knowledge Management Theories
	Ontology for Knowledge Representation

	Extension of SPEM
	Integrating Knowledge Component into SPEM
	Concept Maps for Knowledge Representation
	Algorithm for Knowledge Mapping

	Concept Matching Visualization Examples
	Acceptable Match
	Unacceptable Match
	Discussion on the Examples

	Concluding Remarks and Future Work
	Acknowledgment
	References


