PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power-of-sine windows as generalized maximum sidelobe decay windows - theory and properties: a review and new results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the theoretical properties of power-of-sine time windows, including the property of maximum sidelobe decay. This family of windows is a generalisation of the widely known Maximum Sidelobe Decay (MSD) windows and is referred to as Generalised Maximum Sidelobe Decay (GMSD) windows. GMSD windows are used in methods such as DFT spectrum interpolation (IpDFT), due to their desirable properties for such applications. The paper presents the key results, including the analytical form of the frequency characteristics of GMSD windows and some of their properties. The formulas derived are useful for describing these properties.
Słowa kluczowe
Rocznik
Strony
751--765
Opis fizyczny
Bibliogr. 21 poz., tab., wykr., wzory
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Photonics and Microsystems, Chair of Electronic and Photonic Metrology, Bolesława Prusa 53/55, 50-317 Wrocław, Poland
Bibliografia
  • [1] Rife, D.C., & Vincent, G.A. (1970). Use of the Discrete Fourier Transform in the Measurement of Frequencies and Levels of Tones. Bell System Technical Journal, 49(2), 197-228. https://doi.org/10.1002/j.1538-7305.1970.tb01766.x
  • [2] Harris, F.J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. https://doi.org/10.1109/proc.1978.10837
  • [3] Nuttall, A. (1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(1), 84-91. https://doi.org/10.1109/tassp.1981.1163506
  • [4] Offelli, C., & Petri, D. (1991). Weighting effect on the discrete time Fourier transform of noisy signals. IEEE Transactions on Instrumentation and Measurement, 40(6), 972-981. https://doi.org/10.1109/19.119777
  • [5] Offelli, C., & Petri, D. (1992). The influence of windowing on the accuracy of multifrequency signal parameter estimation. IEEE Transactions on Instrumentation and Measurement, 41(2), 256-261. https://doi.org/10.1109/19.137357
  • [6] Solomon, O.M. (1992). The effects of windowing and quantization error on the amplitude of frequency-domain functions. IEEE Transactions on Instrumentation and Measurement, 41(6), 932-937. https://doi.org/10.1109/19.199437
  • [7] Belega, D. (2005). The maximum sidelobe decay windows. Revue Roumaine des Sciences Techniques. Série Electrotechnique et Energetique, 50(3), 349-356.
  • [8] Zivanovic, M., & Carlosena, A. (2001). Nonparametric spectrum interpolation methods: a comparative study. IEEE Transactions on Instrumentation and Measurement, 50(5), 1127-1132. https://doi.org/10.1109/19.963171
  • [9] Agrež, D. (2002). Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal. IEEE Transactions on Instrumentation and Measurement, 51(2), 287-292. https://doi.org/10.1109/19.997826
  • [10] Belega, D., & Dallet, D. (2008). Frequency estimation via weighted multipoint interpolated DFT. IET Science, Measurement & Technology, 2(1), 1-8. https://doi.org/10.1049/iet-smt:20070022
  • [11] Belega, D., & Dallet, D. (2009). Multifrequency signal analysis by interpolated DFT method with maximum sidelobe decay windows. Measurement, 42(3), 420-426. https://doi.org/10.1016/j.measurement.2008.08.006
  • [12] Borkowski, J., Kania, D., & Mroczka, J. (2014). Interpolated-DFT-Based Fast and Accurate Frequency Estimation for the Control of Power. IEEE Transactions on Industrial Electronics, 61(12), 7026-7034. https://doi.org/10.1109/TIE.2014.2316225
  • [13] Duda, K., & Barczentewicz, S. (2014). Interpolated DFT for sinα(x) Windows. IEEE Transactions on Instrumentation and Measurement, 63(4), 754-760. https://doi.org/10.1109/TIM.2013.2285795
  • [14] Borkowski, J., Mroczka, J., Matusiak, A., & Kania, D. (2021). Frequency Estimation in Interpolated Discrete Fourier Transform with Generalized Maximum Sidelobe Decay Windows for the Control of Power. IEEE Transactions on Industrial Informatics, 17(3), 1614-1624. https://doi.org/10.1109/TII.2020.2998096
  • [15] Wang, K., Wen, H., & Li, G. (2021). Accurate Frequency Estimation by Using Three-Point Interpolated Discrete Fourier Transform Based on Rectangular Window. IEEE Transactions on Industrial Informatics, 17(1), 73-81. https://doi.org/10.1109/TII.2020.2981542
  • [16] Matusiak, A., Borkowski, J., & Mroczka, J. (2022). Noniterative method for frequency estimation based on interpolated DFT with low-order harmonics elimination. Measurement, 196(111241), 1-9. https://doi.org/10.1016/j.measurement.2022.111241
  • [17] Rodrigues, N.M., Janeiro, F.M., & Ramos, P.M. (2022). Implementation of Goertzel-based frequency estimation for power quality monitoring in embedded measurement systems. Metrology and Measurement Systems, 29(3), 455-468. https://doi.org/10.24425/mms.2022.142270
  • [18] Zhang, J., Song, J., Li, C., Xu, X., & Wen, H. (2024). Novel Frequency Estimator for Distorted Power System Signals Using Two-Point Iterative Windowed DFT. IEEE Transactions on Industrial Electronics, 71(10), 13372-13383. https://doi.org/10.1109/tie.2023.3347846
  • [19] Zwillinger, D., Moll, V., Gradshteyn, I.S., & Ryzhik, I.M. (2014). Table of Integrals, Series, and Products (Eighth Edition), Academic Press, UK.
  • [20] Swendsen, R. (2020). An Introduction to Statistical Mechanics and Thermodynamics (2nd Ed.), Oxford University Press, USA.
  • [21] Borkowski, J., & Mroczka, J. (2019). Influence of Noise on the Interpolated DFT-based Frequency Estimation for the Control of Power Using Generalized Maximum Sidelobe Decay Windows, 42nd International Conference on Telecommunications and Signal Processing, TSP 2019, 8769023, 269-272. https://doi.org/10.1109/TSP.2019.8769023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51a54945-61ac-4c20-b36a-0d757ef82dd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.