PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of marine risers subjected to shoal/deep water in the installation process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamics of the installation process of marine risers subjected to shoal/deep seawater is studied. The riser is assumed to be a cantilevered Euler‒Bernoulli beam. The upper end of the riser is clamped on the vessel or the drilling platform. The lower end of the riser is connected to the Blowout Preventer Stack (BOPs) and Lower Marine Risers Package (LMRP). The lateral fluid forces induced by the sea wave and sea current are introduced into the governing equations of motion. The lateral displacement and stress distributions of the riser are obtained by solving the governing equation of the riser via Galerkin’s discretisation scheme and a fourth-order Runge‒Kutta algorithm. The results indicate that the riser exhibits different behaviours under various depths because of the different distributions of the flow velocity ranging from the sea surface to the seabed. In the case of shoal water, the dynamics of the riser are dominated by the sea wave, while in the case of deep water it is affected mainly by the sea current velocity and sea surface wind velocity.
Rocznik
Tom
Strony
43--54
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering Hubei University of Arts and Science Longzhong Street, 441053 Xiangyang City China
  • School of Mechanical Engineering Hubei University of Arts and Science Longzhong Street, 441053 Xiangyang City China
autor
  • School of Mechanical Engineering Hubei University of Arts and Science Longzhong Street, 441053 Xiangyang City China
autor
  • School of Mechanical Engineering Hubei University of Arts and Science Longzhong Street, 441053 Xiangyang City China
autor
  • School of Mechanical Engineering Hubei University of Arts and Science Longzhong Street, 441053 Xiangyang City China
autor
  • School of Mechanical Engineering Hubei University of Arts and Science Longzhong Street, 441053 Xiangyang City China
Bibliografia
  • 1. Y. Wang, L. Wang, Q. Ni, M. Yang, D. Liu, T. Qin (2021): Non-smooth dynamics of articulated pipe conveying fluid subjected to a one-sided rigid stop. Applied Mathematical Modelling, Vol. 89, 802-818.
  • 2. L. Mao, S. Zeng, Q. Liu (2019): Dynamic analysis of soft hang-off riser in deep water, coupling the vibration of lateral and longitudinal directions. Current Science, Vol. 116(9), 1533-1543.
  • 3. J. M. Cabrera-Miranda, J. K. Paik (2017): On the probabilistic distribution of loads on a marine riser. Ocean Engineering, Vol. 134, 105-118.
  • 4. M. Szczotka (2011): Dynamic analysis of an offshore pipe laying operation using the reel method. Acta Mechanica Sinica, Vol. 27(1), 44-55.
  • 5. Y. Zhu. Ocean engineering wave mechanics. Tianjin University Press, 1991.
  • 6. Y. Wang, D. Gao, J. Fang (2015): Mechanical behavior analysis for the determination of riser installation window in offshore drilling. Journal of Natural Gas Science and Engineering, Vol. 24, 317-323.
  • 7. W. He, S. Zhang, S. S. Ge (2013): Boundary control of a flexible riser with the application to marine installation. IEEE Transactions on Industrial Electronics, Vol. 60(12), 5802-5810.
  • 8. Y. Wang, D. Gao, J. Fang (2015): Study on lateral vibration analysis of marine riser in installation-via variational approach. Journal of Natural Gas Science and Engineering, Vol. 22, 523-529.
  • 9. S. K. Chakrabarti (1972): Nonlinear wave forces on vertical cylinder. Journal of the Hydraulics Division, Vol. 98, 1-11.
  • 10. E. Wang (1983): Analysis of two 13,200-ft riser systems using a three-dimensional riser program. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, 1983.
  • 11. W. Azpiazu, M. Thatcher, E. Schwelm (1983): Heave compensation systems: analysis and results of field testing. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, 1983.
  • 12. W. Azpiazu, V. Nguyen (1984): Vertical dynamics of marine risers. In: Proceedings of the Offshore Technology Conference, Houston, Texas, USA, 1984.
  • 13. A. Trim (1991): Axial dynamics of deep water risers. In: Proceedings of the The First International Offshore and Polar Engineering Conference, Edinburgh, The United Kingdom, 1991.
  • 14. C. Johnson, J. Roesset (1992). Axial-bending coupling effects on the dynamic response of deep water risers. In: Proceedings of the The Second International Offshore and Polar Engineering Conference, San Francisco, California, USA, 1992.
  • 15. R. Burrows, R. Tickell, D. Hames, G. Najafian (1997): Morison wave force coefficients for application to random seas. Applied Ocean Research, Vol. 19(3), 183-199.
  • 16. G. Moe, B. Larsen (1997): Dynamics of deep water marine risers - asymptotic solutions. In: Proceedings of the The Seventh International Offshore and Polar Engineering Conference, Honolulu, Hawaii, USA, 1997.
  • 17. E. Kogure, M. Ohashi, S. Urabe, A. Tanabe (1998): Applications of a near surface disconnectable drilling riser in deepwater. In: Proceedings of the IADC/SPE Asia Pacific Drilling Technology, Jakarta, Indonesia, 1998.
  • 18. M. H. Patel, F. B. Seyed (1995): Review of flexible riser modelling and analysis techniques. Engineering Structures, Vol. 17(4), 293-304.
  • 19. C. Athisakul, T. Huang, S. Chucheepsakul (2002): Large strain static analysis of marine risers via a variational approach. Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 2002.
  • 20. M. Yazdchi, M. Crisfield (2002): Non-linear dynamic behaviour of flexible marine pipes and risers. International Journal for Numerical Methods in Engineering, Vol. 54(9), 1265-1308.
  • 21. W. Raman-Nair, E. Baddour (2003): Three-dimensional dynamics of a flexible marine riser undergoing large elastic deformations. Multibody System Dynamics, Vol. 10, 393-423.
  • 22. L. Mathelin, E. de Langre (2005): Vortex-induced vibrations and waves under shear flow with a wake oscillator model. European Journal of Mechanics - B/Fluids, Vol. 24(4), 478-490.
  • 23. I. K. Chatjigeorgiou (2008): A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers. Ocean Engineering, Vol. 35(7), 616-636.
  • 24. W. Dai, F. Gao, Y. Bai (2009): FEM analysis of deepwater drilling risers under the operability and hang-off working conditions. Journal of Marine Science and Application, Vol. 8(2), 156-162.
  • 25. S. T. Santillan, L. N. Virgin, R. H. Plaut (2010): Static and dynamic behavior of highly deformed risers and pipelines. Journal of Offshore Mechanics and Arctic Engineering, Vol. 132(2), 021401.
  • 26. S. S. Ge, W. He, B. V. E. How, Y. S. Choo (2010): Boundary control of a coupled nonlinear flexible marine riser. IEEE Transactions on Control Systems Technology, Vol. 18(5), 1080-1091.
  • 27. W. He, X. He, S. S. Ge (2016): Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Transactions on Mechatronics, Vol. 21(1), 254-265.
  • 28. P. Ma, W. Qiu, D. Spencer (2014): Numerical vortex-induced vibration prediction of marine risers in time-domain based on a forcing algorithm. Journal of Offshore Mechanics and Arctic Engineering, Vol. 136(3), 031703.
  • 29. Y. Wang, D. Gao, J. Fang (2014): Axial dynamic analysis of marine riser in installation. Journal of Natural Gas Science and Engineering, Vol. 21, 112-117.
  • 30. Y. Wang, D. Gao, J. Fang (2014): Static analysis of deep-water marine riser subjected to both axial and lateral forces in its installation. Journal of Natural Gas Science and Engineering, Vol. 19, 84-90.
  • 31. Y. Wang, D. Gao, J. Fang (2015): Study on lateral nonlinear dynamic response of deepwater drilling riser with consideration of the vessel motions in its installation. Tech Science Press, Vol. 48(1), 57-75.
  • 32. Y. Hu, B. Yao, Z. Zheng, L. Lian (2016): Research on marine riser in different installations stages of subsea production tree. In: Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 2016: 1-7.
  • 33. X. Chang, J. Fan, W. Yang, Y. Li, R. Kolahchi (2021): In-line and cross-flow coupling vibration response characteristics of a marine viscoelastic riser subjected to two-phase internal flow. Shock and Vibration, Vol. 2021, 1-27.
  • 34. M. Liu, Y. Wang, T. Qin, J. Zhao, Y. Du (2021): Nonlinear dynamics of cross-flow tubes subjected to initial axial load and distributed impacting constraints. Shock and Vibration, Vol. 2021, 1-15.
  • 35. Y. Chang, G. Chen, L. Xu, H. Wang (2007): Nonlinear dynamic analysis of deep pipe-in-pipe steel catenary riser. China Offshore Oil and Gas, Vol. 3(19), 203-206.
  • 36. Q. Ni, Y. K. Wang, M. Tang, Y. Y. Luo, H. Yan, L. Wang (2015): Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, Vol. 81(1-2), 893-906.
  • 37. Det Norske Veritas (2000): Offshore standard DNV-OS-F101. Submarine pipeline systems, 45-78.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-519ddac5-7fe8-45f6-bc18-bab1d7c622ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.