PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Payload oscillations minimization via open loop control

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of tests of payload oscillations, forced by linear control function which allows to minimize payload sway after acceleration phase and after overhead crane stopping are presented in this paper. The analysis of solution of this problem has been carried out. The algorithm of operation for real drive system which takes into account the possibilities of driving of an overhead crane is also presented. The impact of inaccuracies of measurement of the ropes length on minimizing a displacements of payload during the duty cycle is shown as well. The correctness of the method is confirmed by results both simulation and experimental tests.
Rocznik
Strony
309--327
Opis fizyczny
Bibliogr. 34 poz., fot. kolor., 1 rys., wykr.
Twórcy
autor
  • Lodz University of Technology, Department of Vehicles and Fundamentals of Machine Design
Bibliografia
  • [1] Ahmad, M. A., Raja Ismail, R. M. T., Ramli, M. S., Nasir, A. N. K., Abd Ghani, N. M. and Noordin, N. H.: Techniques For Sway Control Of A Double-Pendulum-Type Overhead Crane, International Journal of Simulation Systems, Science & Technology, 11, 2, 2010.
  • [2] Altafini, C., Frezza, R. and Galid J.: Observing the Load Dynamic of an Overhead Crane with Minimal Sensor Equipment, Proceedings Of the 2ooo IEEE international Conference on Robotics & Automation, San Francisco, CA, 2, 1876-1881, 2000.
  • [3] Aschemann, H., Sawodny, O., Lahres, S. and Hofer, E. P.: Disturbance Estimation And Compensation For Trajectory Control Of An Overhead Crane, Proceedings of the American Control Conference, Chicago, Illinois, 1027-1031, 2000.
  • [4] Bradley, T. H., Danielson, J. and Lawrence, J. and Singhose W.: Command Shaping Under Nonsymmetrical Acceleration and Braking Dynamics, Journal of Vibration and Acoustics, 130, 2008.
  • [5] Bugari c, U. and Vukovi c, J.: Optimal Control of Motion of the System Based on Mathematical Pendulum with Constant Length, FME Transactions, 30, 1-10, 2002.
  • [6] Chang, C. Y. and Hwang, F. H.: Fuzzy Control of Nonlinear Crane System, Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering, Los Angeles, 155-160, 2006.
  • [7] Cink, J. and Kosucki, A.: An unplanned stop of traversing mechanism of the overhead crane with payload oscillations damping, Materiały VI Konferencji Okrętownictwo i Oceanotechnika - Niezawodność i Bezpieczeństwo Systemów Transportowych, Szczecin-Międzyzdroje, Wydawnictwo Uczelniane Politechniki Szczecińskiej, 2002.
  • [8] Cink, J.: Optimum control of cranes, Zeszyty Naukowe Politechniki Łódzkiej, 878, 2001.
  • [9] Abdel-Rahman, E. M., Nayfeh, A. H. and Masoud, Z. N.: Dynamics and Control of Cranes: A Review, Journal of Vibration and Control, 9, 863-908, 2003.
  • [10] Grabowski, E. and Morawski, A.: Modern inverter drives for cranes, Transport Przemysłowy, 1, 11, 33-37, 2001.
  • [11] Ho-Hoon, L.: A New Motion-Planning Scheme for Overhead Cranes With High- Speed Hoisting, Journal of Dynamic Systems, Measurement, and Control, 126, 359-364, 2004.
  • [12] Kosucki, A.: Badanie transportu ładunków przy wykorzystaniu skojarzonych ruchów mechanizmów suwnic pomostowych (Payloads transport research using associated movements of overhead cranes mechanisms), Zeszyty Naukowe, Politechnika Łódzka, 1175, WP L, 2013.
  • [13] Wang, L., Wang, W. and Kong, Z.: Anti-swing Control of Overhead Cranes, Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 8024-8028, 2006.
  • [14] Maneeratanaporn, J. and Murakami, T.: Anti-sway Sliding-mode with Trolley Disturbance Observer for Overhead Crane system, The 12th IEEE International Workshop on Advanced Motion Control March 25-27, Sarajevo, Bosnia and Herzegovina, Conference Publications, 1-6, 2012.
  • [15] Manning, R., Kim, D. and Singhose, W.: Reduction of Distributed Payload Bridge Crane Oscillations, 10th WSEAS Int. Conf. on AUTOMATIC CONTROL, MODELLING & SIMULATION (ACMOS’08), Istanbul, Turkey, 133-139, 2008.
  • [16] Toxqui, R., Yu, W. and Li, X.: Anti-swing control for overhead crane with neural compensation, 2006 International Joint Conference on Neural Networks, Vancouver, BC, Canada, 4697-4703, 2006.
  • [17] Rogers, L. K.: Overhead handling equipment basics, Modern Materials Handling, 12, 30-34, 2011.
  • [18] Singh, T. and Singhose, W.: Tutorial on Input Shaping/Time Delay Control of Maneuvering Flexible Structures, Proceedings of the American Control Conference, Anchorage, 1717-1731, 2002.
  • [19] Singhose, W.: Command Shaping for Flexible Systems: A Review of the First 50 Years, International Journal of Precision Engineering And Manufacturing, 10, 4, 153-168, 2009.
  • [20] Singhose, W., Porter, L. J. and Seering, W. P.: Input Shaped Control of a Planar Gantry Crane with Hoisting, Proceedings of the American Control Conference, Albuquerque, New Mexico, 97-100, 1997.
  • [21] Syvertsen, P. G.: Modeling and Control of Crane on Offshore Vessel, 1-106, 2011.
  • [22] Szpytko, J. and Smoczek, J.: Adaptation control technique of overhead crane mechanisms, 11th IEEE Mediterranean Conference on Control and Automation, Conference Publications, 2003.
  • [23] Thalapil, J.: Input Shaping for Sway Control in Gantry Cranes, IOSR Journal of Mechanical and Civil Engineering, 1, 2, 36-46, 2012.
  • [24] Tomczyk, J., Cink, J. and Kosucki, A.: Dynamics of an overhead crane under a wind disturbance condition, Automation in Construction 42C, 100-111, 2014.
  • [25] Vaughan, J., Maleki, E. and Singhose, W.: Advantages of Using Command Shaping Over Feedback for Crane Control, 2010 American Control Conference, Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2308-2313, 2010.
  • [26] Vazquez, C. and Collado, J.: Oscillation attenuation in an overhead crane: Comparison of some approaches, 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE, Conference Publications, 1-6, 2009.
  • [27] Wahyudi, Jamaludin Jalani, Riza Muhida and Momoh Jimoh Emiyoka Salami: Control Strategy for Automatic Gantry Crane Systems: A Practical and Intelligent Approach, International Journal of Advanced Robotic Systems, 4, 4, 447-456, 2007.
  • [28] Yang, J. H. and Yang, K. S.: Adaptive coupling control for overhead crane systems, Mechatronics, 17, 143-152, 2007.
  • [29] Yang, J. H. and Yang K. S.: Adaptive Control for 3-D Overhead Crane Systems, Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16, 1832-1837, 2006.
  • [30] Yang, J. H.: On the Adaptive Tracking Control of 3-D Overhead Crane Systems, Adaptive Control, 277-306, 2009.
  • [31] Zhang, Z., Chen, D. and Feng, M.: Dynamics Model and Dynamic Simulation of Overhead Crane Load Swing Systems Based on the ADAMS, Computer-Aided Industrial Design and Conceptual Design, CAID/CD 2008. 9th International, Conference Publications, 484-487, 2008.
  • [32] Wu, X., He, X. and Sun, N.: An Analytical Trajectory Planning Method for Underactuated Overhead Cranes with Constraints, Proceedings of the 33rd Chinese Control Conference, July 28-30, Nanjing, China, 2014.
  • [33] Xuebo, Z. Y. and Fang, N. S.: Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints, IEEE Transactions On Industrial Electronics, 61, 12, 2014.
  • [34] Chen He, F. and Yongchun, S. N.: A Novel Optimal Trajectory Planning Method for Overhead Cranes with Analytical Expressions, Proceedings of the 33rd Chinese Control Conference, Nanjing, China, 2014.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-519c14cf-3e25-4e64-8fd0-09e1a2b72f2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.