PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polycarbonate biodegradation by newly isolated Bacillus strains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As polycarbonate is frequently used in many products, its accumulation in landfills is absolutely harmful to the environment. The aims of this study were the screening and isolation of polycarbonate-degrading bacteria (PDB) and the assessment of their ability in the degradation of polycarbonate (PC) polymers. Nine-month buried- -PC films were used for PDB isolation and identification. The biodegradation ability of the isolates was determined by growth curve, clear zone formation, lipase and amylase production, AFM and FTIR. Bacillus cereus and Bacillus megaterium were identified and considered as PDB. The degradation ability of B. megaterium was significantly higher than that of B. cereus. Both were lipase and amylase positive. AFM and FTIR results showed the initiation of bacterial attachment. The PC biodegradation ability of isolates can be very efficient. Finding such efficient isolates (which was less studied before) will promise a decrease in plastic contamination in the future.
Rocznik
Strony
14--20
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Fars Science and Research Branch, Islamic Azad University, Fars, Iran
  • Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
  • Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Bibliografia
  • 1. Arefian, M., Zia, M., Tahmourespour, A. & Bayat, M. (2013). Polycarbonate biodegradation by isolated molds using clear-zone and atomic force microscopic methods, International Journal of Environmental Science and Technology, 10, 6, pp. 1319-1324, DOI: 10.1007/s13762-013-0359-0.
  • 2. Artham, T. & Doble, M. (2009). Fouling and degradation of polycarbonate in seawater: field and lab studies, Journal of Polymers and the Environment, 17, 3, pp. 170-180, DOI: 10.1007/s10924-009-0135-x.
  • 3. Artham, T. & Doble, M. (2012). Bisphenol A and metabolites released by biodegradation of polycarbonate in seawater, Environmental Chemistry Letters, 10, 1, pp. 29-34, http://dx.doi.org/10.1007/s10311-011-0324-4.
  • 4. Auta, H., Emenike, C. & Fauziah, S. (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environmental Pollution, 231, pp. 1552-59, DOI: 10.1016/j.envpol.2017.09.043.
  • 5. Banerjee, A., Chatterjee, K. & Madras, G. (2014). Lipase mediated enzymatic degradation of polydioxanone in solution, Polymer Degradation and Stability, 110, pp. 284-289, https://doi.org/10.1016/j.polymdegradstab.2014.09.015.
  • 6. Boll, M., Geiger, R., Junghare, M. & Schink, B. (2019). Microbial degradation of phthalates: biochemistry and environmental implications, Environmental Microbiology Reports, DOI: 10.1111/1758-2229.12787.
  • 7. Chatterjee, S., Roy, B., Roy, D. & Banerjee, R. (2010). Enzymemediated biodegradation of heat treated commercial polyethylene by Staphylococcal species, Polymer Degradation and Stability, 95, 2, pp. 195-200, DOI:10.1016/j.polymdegradstab.2009.11.025.
  • 8. Cosgrove, L., McGeechan, P.L., Robson, G.D. & Handley, P.S. (2007). Fungal communities associated with degradation of polyester polyurethane in soil, Applied Environmental Microbiology, 73, 18, pp. 5817-5824, DOI: 10.1128/AEM.01083-07.
  • 9. Da Costa, J.P., Nunes, A.R., Santos, P.S., Girão, A.V., Duarte, A.C. & Rocha-Santos, T. (2018). Degradation of polyethylene microplastics in seawater: Insights into the environmental degradation of polymers, Journal of Environmental Science and Health, Part A, 53, 9, pp. 866-875, DOI: 10.1080/10934529.2018.1455381.
  • 10. Das, M.P. & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens, 3 Biotech, 5, 1, pp. 81-86, DOI: 10.1007/s13205-014-0205-1.
  • 11. Devi, R.S., Kannan, V.R., Natarajan, K., Nivas, D., Kannan, K., Chandru, S. & Antony, A.R. (2016). The role of microbes in plastic degradation, In: Chandra R. (Ed.), Environmental Waste Management, CRC Press, Boca Raton, 341.
  • 12. Guzik, U., Hupert-Kocurek, K. & Wojcieszyńska, D. (2013). Intradiol dioxygenases - the key enzymes in xenobiotics degradation, In: Chamy, R. (Ed.), Biodegradation of hazardous and special products, IntechOpen, (pp. 129-153). http://dx.doi.org/10.5772/56205.
  • 13. Guzik, M.W., Kenny, S.T., Duane, G.F., Casey, E., Woods, T., Babu, R.P., Nikodinovic-Runic, J., Murray, M. & O’Connor, K.E. (2014). Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxy alkanoate, Applied Microbiology and Biotechnology, 98, 9, pp. 4223-4232, DOI: 10.1007/s00253-013-5489-2.
  • 14. Harshvardhan, K. & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India, Marine Pollution Bulletin, 77, 1-2, pp. 100-106, DOI: 10.1016/j.marpolbul.2013.10.025.
  • 15. Isfahani, F.M., Tahmourespour, A., Hoodaji, M., Ataabadi, M. & Mohammadi, A. (2018). Characterizing the new bacterial isolates of high yielding exopolysaccharides under hypersaline conditions, Journal of Cleaner Production, 185, pp. 922-928, DOI: 10.1016/j.jclepro.2018.03.030.
  • 16. Kale, S.K., Deshmukh, A.G., Dudhare, M.S. & Patil, V.B. (2015). Microbial degradation of plastic: a review, Journal of Biochemical Technology, 6, 2, pp. 952-961.
  • 17. Keshri, J., Mishra, A. & Jha, B. (2013). Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics, Microbiological Research, 168, 3, pp. 165-173, DOI: 10.1016/j.micres.2012.09.005.
  • 18. Lwanga, E.H., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V. & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration, Science of The Total Environment, 624, pp. 753-757, DOI: 10.1016/j.scitotenv.2017.12.144.
  • 19. Moharir, R.V. & Kumar, S. (2018). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review, Journal of Cleaner Production, 208, pp. 65-76, DOI: 10.1016/j.jclepro.2018.10.059.
  • 20. Muthukumar, A. & Veerappapillai, S. (2015). Biodegradation of Plastics: A Brief Review, International Journal of Pharmaceutical Sciences Review and Research, 31, 2, pp. 204-209.
  • 21. Nzila, A., Thukair, A., Sankara, S., Chanbasha, B. & Musa, M.M. (2016). Isolation and characterization of naphthalene biodegrading Methylobacterium radiotolerans bacterium from the eastern coastline of the Kingdom of Saudi Arabia, Archives of Environmental Protection, 42, 3, pp. 25-32, https://doi.org/10.1515/aep-2016-0028.
  • 22. Phukon, P., Saikia, J. P. & Konwar, B. K. (2012). Bio-plastic (P-3HB-co-3HV) from Bacillus circulans (MTCC 8167) and its biodegradation, Colloids and Surfaces B: Biointerfaces, 92, pp. 30-34, DOI: 10.1016/j.colsurfb.2011.11.011.
  • 23. Premraj, R. & Doble, M. (2005). Biodegradation of polymers. Indian Journal of Biotechnology, 4, 2, pp. 186-193, DOI: 10.12691/jaem-5-1-2.
  • 24. Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B. & Zhang, W. (2019). Biodegradation of Polyethylene by Enterobacter sp. D1 from the Guts of Wax Moth Galleria mellonella, International Journal of Environmental Research and Public Health, 16, 11, 1941, pp. 1-11, DOI: 10.3390/ijerph16111941.
  • 25. Russell, J.R., Huang, J., Anand, P., Kucera, K., Sandoval, A.G., Dantzler, K.W. & Koppstein, D. (2011). Biodegradation of polyester polyurethane by endophytic fungi, Applied Environmental Microbiology, 77, 17, pp. 6076-6084, DOI: 10.1128/AEM.00521-11.
  • 26. Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review, Biotechnology Advances, 26, 3, pp. 246-265, DOI: 10.1016/j.biotechadv.2007.12.005.
  • 27. Sivalingam, G. & Madras, G. (2004). Dynamics of lipase catalyzed enzymatic degradation of poly (bisphenol‐A carbonate), Journal of Applied Polymer Science, 91, 4, pp. 2391-2396, https://doi.org/10.1002/app.13394.
  • 28. Souza, P.M.D. (2010). Application of microbial α-amylase in industry - A review. Brazilian Journal of Microbiology, 41, 4, pp. 850-861, DOI: 10.1590/S1517-83822010000400004.
  • 29. Tokiwa, Y., Calabia, B., Ugwu, C. & Aiba, S. (2009). Biodegradability of plastics, International Journal of Molecular Sciences, 10, 9, pp. 3722-3742, https://doi.org/10.3390/ijms10093722.
  • 30. Tribedi, P. & Sil, A.K. (2013). Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm, Environmental Science and Pollution Research, 20, 6, pp. 4146-4153, DOI: 10.1007/s11356-012-1378-y.
  • 31. Zawierucha, I., Malina, G., Ciesielski, W. & Rychter, P. (2014). Effectiveness of Intrinsic Biodegradation Enhancement in Oil Hydrocarbons Contaminated Soil, Archives of Environmental Protection, 40, 1, pp. 101-113, DOI: 10.2478/aep-2014-0010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5194bac6-b999-4619-b057-a5b6f20ba3ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.