PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Analysis of Precipitation Process of Complex Carbonitride TixV1-xCyN1-y in HSLA-Type Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a detailed analysis of the MX-type interstitial phase precipitation process and a thermodynamic analysis of the TixV1-xCyN1-y carbonitride precipitation in austenite. The subject of research analysis was the newly developed HSLA-type steel containing 0.175% C, 1.02% Si, 1.87% Mn, 0.0064% N, 0.22% Mo, and microadditions 0.022% V and 0.031% Ti. Analysis of the process of precipitation of MX interstitial phases under thermodynamic equilibrium conditions proved that the first phase that precipitates in the austenite of the tested steel is TiN-type nitride. The onset temperature of this phase was 1450°C. Subsequently, carbides of the TiC-type, VN-type nitrides and VC-type carbides, for which the precipitation onset temperatures were 1180°C, 870°C and 775°C will be released, respectively. The analysis of the precipitation process of the complex carbonitride in austenite under thermodynamic equilibrium conditions was based on the Hillert and Staffansson model, developed by Adrian, with the use of the CarbNit computer program. The beginning of carbonitride precipitation with the stoichiometric composition Ti0.985V0.015C0.073N0.927 occurred at the temperature of 1394°C. At 850°C practically all of the Ti is bound in the carbonitride of the stoichiometric composition Ti0.883V0.117C0.378N0.622. At the same temperature, a significant part of microaddition V will be dissolved in austenite, which means that vanadium will have a lesser effect on the formation of a fine-grained austenite structure, but more strongly on the precipitation hardening of steel by the dispersion VN and V particles (C,N) released during the cooling of the products.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Sugimoto K., Sato S., Kobayashi J., Srivastava A.K. Effects of Cr and Mo on mechanical properties of hot-forged medium carbon TRIP-aided bainitic ferrite steels. Metals. 2019; 9(10): 1–13.
  • 2. Sugimoto K., Hojo T., Srivastava A.K. Low and medium carbon advanced high-strength forging steels for automotive applications. Metals 2019; 9(12): 1–14.
  • 3. De Oliveira A.P., Gonzalez B.M. The engineering behind the mechanical properties enhancement on HSLA steels, microalloyed with niobium: Effects of boron and titanium. Journal of Materials Research and Technology. 2020; 9(4): 9372–9379.
  • 4. Zhang Y., Li X., Liu Y., Liu C., Dong J., Yu L., Li H. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modelling. Materials Characterization. 2020; 169: 1–11.
  • 5. Li X., Shi L., Liu Y., Gan K., Liu Ch. Achieving a desirable combination of mechanical properties in HSLA steel through step quenching. Materials Science & Engineering A. 2020; 772: 1–9.
  • 6. Lu J., Yu H., Yang S. Mechanical behavior of multistage heat-treatment HSLA steel based on examinations of microstructural evolution. Materials Science & Engineering A. 2021; 803: 1–13.
  • 7. Shao Y., Liu C., Yan Z., Li H., Liu Y. Formation mechanism and control methods of acicular ferrite in HSLA steels: a review. Journal of Materials Science & Technology. 2018; 34: 737–744.
  • 8. Opiela M., Grajcar A. Microstructure and anisotropy of plastic properties of thermomechanically-processed HSLA-type steel plates. Metals. 2018; 8(5): 1–15.
  • 9. Dong J., Li C., Liu C., Huang Y., Yu L., Li H., Liu Y. Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-V-Ti microalloyed ultra-high strength steel. Materials Science and Engineering A. 2017; 705: 249–256.
  • 10. Saha D.C., Westerbaan D., Nayak S., Biro E., Gerlich A.P., Zhou Y. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels. Materials Science & Engineering A. 2014; 607: 445–453.
  • 11. Sugimoto K., Hojo T., Srivastava A.K. An overview of fatigue strength of case-hardening TRIP-aided martensitic steels. Metals. 2018; 8(5): 1–19.
  • 12. Opiela M. Effect of thermomechanical processing of the microstructure and mechanical properties of Nb-Ti-V microalloyed steel. Journal of Materials Engineering and Performance. 2014; 23(9): 3379–3388.
  • 13. Jun H.J., Kang J.S., Seo D.H., Kang K.B., Park C.G. Effect of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Materials Science & Engineering A. 2006; 422: 157–162.
  • 14. Gladman T. Physical Metallurgy of Microalloyed Steels. The Institute of Materials, London, 1997.
  • 15. Li X., Liu Y., Gan K., Dong J., Liu C. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures. Materials Science & Engineering A. 2020; 785: 1–14.
  • 16. Chen S., Li L., Peng Z., Huo X., Gao J. Strain-induced precipitation in Ti microalloyed steel by two-stage controlled rolling process. Journal of Materials Research and Technology. 2020; 9(6): 15759–15770.
  • 17. Ozgowicz W., Opiela M., Grajcar A., Kalinowska-Ozgowicz E., Krukiewicz W. Metallurgical products of microalloy constructional steels. Journal of Achievements in Materials and Manufacturing Engineering. 2011; 44: 7–34.
  • 18. Zardoveev A., Poznyakov V., Baudin T. Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies. Materials Today Communications. 2021; 28: 1–12.
  • 19. Adamczyk J. Development of the microalloyed constructional steels. Journal of Achievements Materials and Manufacturing Engineering. 2006; 14: 9–20.
  • 20. Rodrigez-Ibabe J.M. Thin slab direct rolling of microalloying steels. Trans Tech Publications Ltd., Switzerland, 2007.
  • 21. Adrian H., Pickering F.B. The effect of nitrogen and titanium-niobium additions on the hardenability of 0.4% C, 1.6% Mn steels treated with vanadium. Report to Strategic Minerals Corporation, 1990.
  • 22. Adrian H. A thermodynamic analysis of microalloy carbonitride precipitation. Proceedings of the International Symposium “Microalloyed Vanadium Steels”, Kraków, Poland 1990, 105–124.
  • 23. Liu W.J., Jonas J.J. Calculation of the Ti(CyN1-y)-Ti4C2S2-MnS austenite equilibrium in Ti-bearing steels. Metallurgical Transactions. 1989; 20: 1361–1374.
  • 24. Adrian H. Thermodynamic calculations of carbonitride precipitation as a guide for alloy designe of microalloyed steels. Proceedings of International Conference “Microalloying’95”, Pittsburg, USA 1995, 285–305.
  • 25. Dutta B., Sellars C.M. Effect of composition and process variables on Nb(C,N) precipitation in niobium microalloyed austenite. Materials Science and Technology. 1987; 3: 197–206.
  • 26. Liu W.J., Jonas J.J. Nucleation kinetics of Ti carbonitride in microalloyed austenite. Metallurgical Transactions. 1989; 20: 689–696.
  • 27. Hillert M., Staffansson L.I. The regular solution model for stoichiometric phases and ionic melts. Acta Chemica Scandinavica. 1970; 24: 3618–3626.
  • 28. Maugis P., Gouné M.: Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 2005; 53: 3359–3367.
  • 29. Adrian H. Thermodynamic analysis of carbonitride precipitation in low alloy steels. Hutnik–Wiadomości Hutnicze. 1997; 4: 179–183. (in Polish).
  • 30. Adrian H. Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without addition of aluminium. Material Science and Technology. 1992; 8: 406–415.
  • 31. Adrian H., Glowacz E. The effect of nitrogen and microalloying elements (V and V+AL) on austenite grain growth of 40Cr8 steel. Archives of Metallurgy and Materials. 2010; 55(1): 107–116.
  • 32. Opiela M. Thermodynamic analysis of precipitation process of MX-type phases in high strength low alloy steels. Advances of Science and Technology Research Journal. 2021; 15(2): 90–100.
  • 33. Matsuda S., Okumura N. Effect of distribution of TiN precipitate particles on the austenite grain size of low carbon low alloy steels. Transactions ISIJ. 1978; 18: 198–205.
  • 34. Palmiere E.J. Precipitation phenomena in microalloyed steels. Proceedings of the International Conference Microalloyed’95, Iron and Steel Society. Pittsburg, USA 1995, 307–320.
  • 35. Hudd R.C., Jones A., Kale M.N. A method for calculation the solubility and composition of carbonitride precipitates in steel with particular reference to niobium carbonitride. Journal of Iron and Steel Institute. 1971; 209: 121–125.
  • 36. Balart M.J., Davis C.L., Strangwood M. Fracture behaviour in medium-carbon Ti-V-N and V-N microalloyed ferritic-pearlitc and bainitic forging steels with enhanced machinability. Materials Science & Engineering A. 2002; 328: 48–57.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5191b79b-18a0-440d-b1a7-c6e445539d29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.