PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buta-1,3-dien : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Buta-1,3-diene : documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
PL
Buta-1,3-dien jest gazem stosowanym do produkcji żywic termoplastycznych i elastomerów kauczuku i lateksu. Buta-1,3-dien wchłania się głównie w układzie oddechowym, a następnie jest metabolizowany do monoepoksydu – 1,2-epoksybut-3-enu i diepoksydu – 1,2:3,4-diepoksybutanu, a po ich sprzężeniu z glutationemjest wydalany z moczem. Z danych Centralnego Rejestru o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym wynika, że w 2015 r. liczba narażonych na ten związek w Polsce wynosiła 958 osób i dodatkowo około 200 było narażonych na substancje ropopochodne, których działanie rakotwórcze jest uzależnione od buta-1,3-dienu. Według danych stacji sanitarno-epidemiologicznych w 2013 r. oraz 2016 r. nie zanotowano w polskim przemyśle narażenia pracowników na buta-1,3-dien o stężeniu większym niż 4,4 mg/m3, czyli przekraczającym obowiązującą wartość NDS. Buta-1,3-dien w małych stężeniach jest łagodnym czynnikiem narkotycznym dla ludzi, natomiast u osób zawodowo narażonych na ten związek stwierdzano objawy jego działania drażniącego na błony śluzowe oczu i dróg oddechowych. Buta-1,3-dien jest substancją o niewielkiej toksyczności ostrej dla zwierząt (wartość LC50 dla szczurów wynosi 270 000 mg/m3). Substancja ta jest mutagenna i genotoksyczna, może powodować uszkodzenia materiału genetycznego komórek somatycznych i komórek płciowych. Wykazano, że buta-1,3-dien jest czynnikiem rakotwórczym dla myszy B6C3F1 i szczurów. Istnieją również dowody epidemiologiczne świadczące o tym, że narażenie zawodowe na buta-1,3-dien jest związane z ryzykiem powstawania nowotworów układu limfohematopoetycznego. Według klasyfikacji IARC buta-1,3-dien jest zaliczany do grupy 1, czyli czynników rakotwórczych dla ludzi, a wg klasyfikacji ACGIH do grupy A2, czyli substancji podejrzanych o działanie rakotwórcze na ludzi. W Europie buta-1,3-dien jest zaklasyfikowany do kategorii 1A czynników rakotwórczych i do kategorii 1B czynników mutagennych. Buta-1,3-dien nie powoduje zaburzeń płodności, a jego działanie teratogenne ujawniło się tylko wówczas, gdy zastosowane dawki były toksyczne dla matek. W dyrektywie Parlamentu Europejskiego i Rady (UE) dla buta-1,3-dienu podano wartości dopuszczalnego stężenia wiążącego (BOELV) na poziomie 2,2 mg/m3. Dyrektywa wejdzie w życie w państwach członkowskich UE 17 stycznia 2020 r. Zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) buta-1,3-dienu w powietrzu środowiska pracy na poziomie 2,2 mg/m3 oraz następujące wskaźniki dopuszczalnego stężenia w materiale biologicznym (DSB): –– 1,6 mg 1,2-dihydroksy-4-(N-acetylocysteino-S-ylo)butanu/g kreatyniny w moczu, mierzone nazakończenie zmiany roboczej –– 2,1 pmol/g Hb – addukty hemoglobiny: mieszanina N-[1-(hydroksymetylo)prop-2-enylo]waliny iN-(2-hydroksybut-3-enylo)waliny we krwi obrazujące narażenie w okresie ostatnich 120 dni. Normatyw ten dodatkowo oznaczono „Carc. 1A” – substancja o udowodnionym działaniu rakotwórczym dla człowieka i „Muta. 1B” – substancja, która jest rozpatrywana jako mutagenna dla człowieka. Nie znaleziono podstaw do wyznaczenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) buta-1,3-dienu. Oszacowane dodatkowe ryzyko powstania białaczki przy 40-letnim okresie narażenia na buta-1,3-dien o stężeniu 2,2 mg/m3 wynosi 8 10-7, jest więc małe w porównaniu z ryzykiem dla populacji generalnej w Polsce, które wynosi 7,15 10-5.
EN
Buta-1,3-diene is a gas used in the production of thermoplastic resins, elastomers and synthetic rubber. Buta-1,3-diene is absorbed mainly in the respiratory tract and then metabolized to monoepoxide – 1,2-epoxybut- -3-ene and diepoxide – 1.2:3,4 diepoxybutane, and after their conjugation with glutathione is excreted with urine. According to data from the Central Registry on Exposure to Substances, Mixtures, Agents or Carcinogenic or Mutagenic Technological Processes, in 2015 the number of people exposed to buta-1,3-diene in Poland was 958 and additionally about 200 were exposed to petroleum substances which carcinogenic effect is depending on the buta-1,3-diene. According to data from sanitary-epidemiological stations, in Poland in 2013 and 2016, there were no workers exposed to buta-1,3-diene at levels exceeding maximum allowable concentration (MAC) of 4.4 mg/m3 . Buta-1,3-diene in small concentrations is a mild narcotic agent for humans, while for occupationally xposed workers it has irritating properties to the mucous membranes of the eyes and airways. Buta-1,3-diene is a substance with low acute toxicity to animals (LC50 value for rats is 270 000 mg/m3 ). This substance is mutagenic and genotoxic, it can cause damage to the genetic material of somatic and germ cells. It has been proved that buta-1,3-diene is carcinogenic for B6C3F1 mice and rats. There is also epidemiological evidence that occupational exposure to buta-1,3-diene is associated with the risk of a cancer of a lymphohematopoietic system. According to the IARC classification, buta-1,3-diene is included in group 1, i.e., carcinogenic substances for humans, and according to ACGIH classification to group A2, i.e., substances suspected to be carcinogenic for humans. In Europe, buta-1,3-diene is classified in Cat. 1A. carcinogens and Cat. 1B. mutagenic compounds. Buta-1,3-diene does not cause fertility disturbances, and its teratogenic effects appeared when doses were toxic to mothers only. In Directive 2017/2398 of the European Parliament and of Council (EU) 2017/2398 of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work for buta-1,3-diene, binding occupational exposure limit value (BOELV) was at the level of 2.2 mg/m3 (Official Journal of the EU L 345 of 27/12/2017, p. 87). The directive will be in force in the EU Member States on January 17, 2020. It was proposed to adopt the value of the maximum allowable concentration (MAC) of the buta-1,3-diene at the level of 2.2 mg/m3 and the following values of the biological exposure indices (BEI): – 1.6 mg of 1,2-dihydroxy-4-(N-acetyl-cystein- -S-yl)butane/g creatinine in urine measured at the end of working shift – 2.1 pmol/g Hb - hemoglobin adducts: mixture of N-[1-(hydroxymethyl)prop-2-enyl]valine and N-(2-hydroxybut-3-enyl)valine in blood showing exposure for the last 120 days. This standard is additionally marked Carc. 1A – a substance with proven carcinogenic effect for humans and Muta. 1B – a substance that is considered mutagenic for humans. There is no evidence for establishing STEL value for buta-1,3-diene. The estimated additional risk of leukemia during the 40-year exposure to buta-1,3-diene at a concentration of 2.2 mg/m3 is 8×10-7, it is lower than the risk for the general population in Poland, which is 7.15×10-5.
Rocznik
Tom
Strony
43--85
Opis fizyczny
Bibliogr. 171 poz., rys., tab.
Twórcy
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź ul. J. Muszyńskiego 1
autor
  • Instytut Medycyny Pracy im. prof. dr. med. Jerzego Nofera 91-348 Łódź ul. św. Teresy od Dzieciątka Jezus 8
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź ul. J. Muszyńskiego 1
Bibliografia
  • 1. ACGIH (2001). 1,3-Butadiene. Documentation of the threshold limit values.
  • 2. ACGIH (2006). Documentation of the threshold limits values. Ed. 6. 1,3-Butadiene Recommended. Cincinnati, BEI.
  • 3. ACGIH (2015). Guide to Occupational Exposure Values.
  • 4. Acquavella J.F. (1990). Future directions in epidemiologic studies of 1,3-butadiene-exposed workers. Environ. Health Perspect. 86, 129–134 [cyt. za: ACGIH 2001].
  • 5. Adler I.D., Cao J., Filser J.G., Gassner P., Kessler W., Kliesch U., Neuhauser-Klaus A., Nusse M. (1994). Mutagenicity of 1,3-butadiene inhalation in somatic and germinal cells of mice. Mutat. Res. 309, 307–314.
  • 6. Adler I.D., Filser J.G., Gassner P., Kessler W., Schoneich J., Schriever-Schwemmer G. (1995). Heritable translocations induced by inhalation exposure of male mice to 1,3-butadiene. Mutat. Res. 347, 121–127
  • 7. Adler I.D., Filser J., Gonda H., Schriever-Schwemmer G. (1998). Dose response study of buta-1,3-diene-induced dominant lethal mutation and heritable translocations in germ cells of male mice. Mutat. Res. 397, 85–92.
  • 8. Albertini R.J., Sram R.J., Vacek P.M., Lynch J., Wright M., Nicklas J.A., Boogaard P.J., Henderson R.F., Swenberg J.A., Tates A.D., Ward J.B. Jr. (2001). Biomarkers for assessing occupational exposures to 1,3-butadiene. Chem. Biol. Interact. 135-136, 429–453.
  • 9. Albertini R.J., Sram R.J., Vacek P.M., Lynch J., Nicklas J.A., van Sittert N.J., Boogaard P.J., Henderson R.F., Swenberg J.A., Tates A.D., Ward J.B. Jr, Wright M., Ammenheuser M.M., Binkova B., Blackwell W., de Zwart F.A., Krako D., Krone J., Megens H., Musilova P., Rajska G., Ranasinghe A., Rosenblatt J.I., Rossner P., Rubes J., Sullivan L., Upton P., Zwinderman A.H. (2003). Biomarkers in Czech workers exposed to 1,3-butadiene: a transitional epidemiologic study. Res. Rep. Health Eff. Inst. 16, 1–141 (discussion: 143–162).
  • 10. Albertini R.J., Sram R.J., Vacek P.M., Lynch J., Rossner P., Nicklas J.A., McDonald J.D., Boysen G., Georgieva N., Swenberg J.A. (2007). Molecular epidemiological studies in 1,3-butadiene exposed Czech workers: female-male comparisons. Chem. Biol. Interact. 166, 63–77
  • 11. Anderson D., Edwards A.J., Brinkworth M.H. (1993). Male-mediated F1 effects in mice exposed to buta-1,3- -diene. IARC Scientific Publication No. 127, 171–181.
  • 12. Anderson D., Dobrzyńka M.M., Jackson L.I., Yu T.W., Brinkworth M.H. (1997). Somatic and germ cell effects in rats and mice after treatment with 1,3- butadiene and its metabolites, 1,2-epoxybutene and 1,2,3,4-diepoxybutane. Mutat. Res. 391, 233–242.
  • 13. Araki A., Noguchi T., Kato F., Matsushima T. (1994). Improved method for mutagenicity testing of gaseous compounds by testing a gas sampling bag. Mutat. Res. 307, 335–344.
  • 14. Arce G.T., Vincent D.R., Cunningham M.J., Choy W.N., Sarrif A.M. (1990). In vitro and in vivo genotoxicity of 1,3-butadiene and metabolites. Environ. Health Perspect. 86, 75–78.
  • 15. ATSDR (2012). Toxicological profile for 1,3-butadiene. US Department of Health and Human Service. Agency for Toxic Substances and Disease Registry.
  • 16. Begemann P., Sram R.J., Neumann H.G. (2001). Hemoglobin adducts of epoxybutene in workers occupationally exposed to 1,3-butadiene. Arch. Toxicol. 74, 680–687.
  • 17. Bevan C., Stadler J.C., Elliott G.S., Frame S.R., Baldwin J.K., Leung H.W., Moran E., Panepinto A.S. (1996). Subchronic toxicity of 4-vinylcyclohexene in rats and mice by inhalation exposure. Fundam. Appl. Toxicol. 32, 1–10.
  • 18. Bolt H.M., Roos P.H., Thier R. (2003). The cytochromem-450 isoenzyme CYP2E1 in the biological processing of industrial chemicals: consequences for occupational and environmental medicine. Int. Arch. Occup. Environ. Health 76, 174–185.
  • 19. Bond J.A., Dahl A.R., Henderson R.F., Dutcher J.S., Mauderly J.L., Birnbaum L.S. (1986). Species differences in the disposition of inhaled butadiene. Toxicol. Appl. Pharmacol. 84, 617–627.
  • 20. Bond J.A., Dahl A.R., Henderson R.F., Birnbaum L.S. (1987). Species differences in the disposition of inhaled butadiene in tissues. Am. Ind. Hyg. Assoc. J. 48, 10, 867– 872.
  • 21. Bond J.A., Medinsky M.A. (2001). Insights into the toxicokinetics and toxicodynamics of 1,3-butadiene. Chem. Biol. Interact Prev. 135-136, 599–614.
  • 22. Boogaard P.J., Sumner S.C., Bond J.A. (1996a). Glutathione conjugation of 1,2:3,4-diepoxybutane in human liver and rat and mouse liver and lung in vitro. Toxicol. Appl. Pharmacol. 136, 307–316.
  • 23. Boogaard P.J., Sumner S.C., Turner M.J., Bond J.A. (1996b). Hepatic and pulmonary glutathione conjugation of 1,2:3,4-diepoxybutane in human, rat and mouse in vitro. Toxicology 113, 297–299.
  • 24. Boogard P.J. (2002). Use of haemoglobin adducts in exposure monitoring and risk assessment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 778, 309–322.
  • 25. Boysen G., Georgieva N.I., Upton P.B., Jayaraj K., Li Y., Walker V.E., Swenberg J.A. (2004). Analysis of diepoxidespecific cyclic N-terminal globin adducts in mice and rats after inhalation exposure to 1,3-butadiene. Cancer Res. 64, 8517–8520.
  • 26. Boysen G., Georgieva N.I., Upton P.B., Walker V.E., Swenberg J.A. (2007). N-terminal globin adducts as biomarkers for formation of butadiene derived epoxides. Chem. Biol. Interact. 166, 84–92.
  • 27. Brinkworth M.H., Anderson D., Hughes J.A., Jackson L.I., Yu T.W., Nieschlag E. (1998). Genetic effects of 1,3-butadiene of the mouse testis. Mutat. Res. 397, 67–75. 28. Brunnemann K.D., Kagan M.R., Cox J.E., Hoffmann D. (1990). Analysis of 1,3-butadiene and other selected gas-phase components in cigarette mainstream and sidestream smoke by gas chromatography-mass selective detection. Carcinogenesis 11, 1983–1968.
  • 28. Carpenter C.P., Shaffer C.B., Weil C.S., Smyth H.F. Jr. (1944). Studies on the inhalation of 1,3-butadiene; with a comparison of its narcotic effect with benzol, toluol, and styrene, and a note on the elimination of styrene by the human. J. Ind. Hyg. Toxicol. 26, 69–78.
  • 29. Cheng H., Sathiakumar N., Graff J., Matthews R., Delzell E. (2007). 1,3-Butadiene and leukemia among rubber industry workers: exposure-response relationships. Chem. Biol. Interact. 166(1-3), 15–24.
  • 30. Choy W.N., Vlachos D.A., Cunningham M.J., Arce G.T., Sarrif A.M. (1986). Genotoxicity of 1,3-butadiene. Induction of bone marrow micronuclei in B6C3F1 mice and Sprague-Dawley rats in vivo. Environ. Mutagen. 8 (suppl. 6), 18.
  • 31. CIOP (2012). Czynniki szkodliwe w środowisku pracy. Wartości dopuszczalne.
  • 32. Citti L., Gervasi P.G., Turchi G., Bellucci G., Bianchini R. (1984). The reaction of 3,4-epoxy-1-butene with deoxyguanosine and DNA in vitro: synthesis and characterization of the main adducts. Carcinogenesis 5, 47–52.
  • 33. Conner M.K., Luo J.E., Gutierrez de Gotera O. (1983). Induction and repair of sister-chromatid exchanges in multiple murine tissues in vivo by diepoxybutane. Mutation Res. 108, 251–263.
  • 34. Crouch C.N., Pullinger D.H., Gaunt I.F. (1979). Inhalation toxicity studies with 1,3-butadiene – 2.3 month toxicity studies in rats. Am. Ind. Hyg. Assoc. J. 40, 796–802. 35. Csanady G.A., Guengerich F.P., Bond J.A. (1992). Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice. Carcinogenesis 13(7), 1143–1153.
  • 35. Dahl A.R., Bechtold W.E., Bond J.A., Henderson R.F., Mauderly J.L., Muggenburg B.A., Sun J.D., Birnbaum L.S. (1990). Species differences in the metabolism and disposition of inhaled 1,3-butadiene and isoprene. Environ. Health Perspect. 86, 65–69.
  • 36. de Meester C., Poncelet F., Roberfroid M., Mercier M. (1980). The mutagenicity of butadiene towards Salmonella typhimurium. Toxicol. Lett. 6, 125–130.
  • 37. Delzell E., Sathiakumar N., Hovinga M., Macaluso M., Julian J., Larson R., Cole P., Muir D.C. (1996). A follow-up study of synthetic rubber workers. Toxicology 113, 182– 189.
  • 38. Delzell E., Macaluso M., Sathiakumar N., Matthews R. (2001). Leukemia and exposure to 1,3-butadiene, styrene and dimethyldithiocarbamate among workers in the synthetic rubber industry. Chem. Biol. Interact. 135-136, 515–534.
  • 39. Delzell E., Sathiakumar N., Graff J., Macaluso M., Maldonado G., Matthews R. (2006). An updated study of mortality among North American synthetic rubber industry workers. Res. Rep. Health Eff. Inst. 132, 1–63.
  • 40. Ditkowska J., Wojciechowska U., Zatoński W. (2007). Nowotwory złośliwe w Polsce w 2005 roku. Warszawa, Centrum Onkologii – Instytut im. Marii SkłodowskiejCurie. 41. Ditkowska J., Wojciechowska U., Zatoński W. (2009). Nowotwory złośliwe w Polsce w 2007 roku. Warszawa, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie.
  • 42. Ditkowska J., Wojciechowska U., Zatoński W. (2011). Nowotwory złośliwe w Polsce w 2009 roku. Warszawa, Centrum Onkologii – Instytut im. Marii SkłodowskiejCurie.
  • 43. Divine B.J. (1990). An update on mortality among workers at a 1,3-butadiene facility – preliminary results. Environ. Health Perspect. 86, 107–117 [cyt. za: ACGIH 2001]. Divine B.J., Hartman C.M. (1996). Mortality update of butadiene production workers. Toxicology 113, 169–181.
  • 44. Divine B.J., Hartman C.M. (2001). A cohort mortality study among workers at a 1,3-butadiene facility. Chem. Biol. Interact. 135-136, 535–553.
  • 45. Dollard G.J., Dumitrean P., Telling S., Dixon J., Derwent R.G. (2007). Observed trend in ambient concentrations of C2–C8 hydrocarbons in the United Kingdom over the period from 1993 to 2004. Atmos. Environ. 41, 2559– 2569.
  • 46. Duverger M., Lambotte M., Malvoisin E., de Meester C., Poncelet F., Mercier M. (1981). Metabolic activation and mutagenicity of 4 vinylic monomers (vinyl chloride, styrene, acrylonitrile, butadiene). Toxicol. Eur. Res. 3, 131–140.
  • 47. Dyrektywa Parlamentu Europejskiego i Rady (UE) 2017/2398 z dnia 12 grudnia 2017 r. zmieniająca dyrektywę 2004/37/WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy. Dz. Urz. UE L 345 z 27.12.2017, 87.
  • 48. ECETOC (2000). 1,3-Butadiene human health aspects. Geneva, International Programme on Chemical Safety Concise International Chemical Assessment Document.
  • 49. ECHA (2017). Buta-1,3-diene. Brief Profile [online; dostęp: 2017].
  • 50. EPA (1985). Mutagenicity and carcinogenicity assessment of 1,3-butadiene. Washington, Environmental Protection Agency.
  • 51. EPA (2002). Health Assessment of 1,3-Butadiene. National Center for Environmental Assessment. Washington, DC, Washington Office of Research and Development, U.S. Environmental Protection Agency.
  • 52. Fajen J.M., Roberts D.R., Ungers L.J., Krishnan E.R. (1990). Occupational exposure of workers to 1,3-butadiene. Environ. Health Perspectives 86, 11–18.
  • 53. Filser J.G., Faller T.H., Bhowmik S., Schuster A., Kessler W., Putz C., Csanady G.A. (2001). First-pass metabolism of 1,3-butadiene in once-through perfused livers of rats and mice. Chem. Biol. Interact. 135-136, 249–265.
  • 54. Filser J.G., Hutzler C., Meischner V., Veereshwarayya V., Csanady G.A. (2007). Metabolism of 1,3-butadiene to toxicologically relevant metabolites in single-exposed mice and rats. Chem. Biol. Interact. 166, 93–103.
  • 55. Fustinoni S., Soleo L., Warholm M., Begemann P., Rannug A., Neumann H.G., Swenberg J.A., Vimercati L., Colombi A. (2002). Influence of metabolic genotypes on biomarkers of exposure to 1,3-butadiene in humans. Cancer Epidemiol Biomarkers Prev. 11, 1082–1090.
  • 56. GESTIS International Limit Values (2017). [http:// limitvalue.ifa.dguv.de/], [dostęp: 2017].
  • 57. GIS (2015). Główny Inspektor Sanitarny [dane niepublikowane].
  • 58. Goggin M., Swenberg J.A., Walker V.E., Tretyakova N. (2009). Molecular dosimetry of 1,2,3,4,-diepoxybutaneinduced DNA-DNA cross-links in B6C3F1 mice and F344 rats exposed to 1,3-butadiene by inhalation. Cancer Res. 69, 2479–2486.
  • 59. Graff J.J., Sathiakumar N., Macaluso M., Maldonado G., Matthews R., Delzell E. (2005). Chemical exposures in the synthetic rubber industry and lymphohematopoetic cancer mortality. J. Occup. Environ. Med. 47, 916–932.
  • 60. Health Canada (2000). Priority Substances List Assessment Report: 1,3-Butadiene [cyt. za: IARC 2012].
  • 61. Henderson R.F., Hahn F.F., Barr E.B., Belinsky S.A., Menache M.G., Benson J.M. (1999). Carcinogenicity of inhaled butadiene diepoxide in female B6C3F1 mice and Sprague-Dawley rats. Toxicol. Sci. 52, 33–44 [cyt. za: IARC 2012].
  • 62. 62. Henderson R.F., Barr E.B., Belinsky S.A., Benson J.M., Hahn F.F., Menache M.G. (2000). 1,3-Butadiene: cancer, mutations, and adducts. Part I: Carcinogenicity of 1,2,3,4-diepoxybutane. Res. Rep. Health Eff. Inst. 92, 11–43 [cyt. za: IARC 2012].
  • 63. Himmelstein M.W., Turner M.J., Asgharian B., Bond J.A. (1994). Comparison of blood concentrations of 1,3-butadiene and butadiene epoxides in mace and rats exposed to 1,3-butadiene by inhalation. Carcinogenesis 15(8), 1479–1486.
  • 64. Himmelstein M.W., Asgharian B., Bond J.A. (1995). High concentrations of butadiene epoxides in livers and lungs of mice compared to rats exposed to 1,3-butadiene. Toxicol. Appl. Pharmacol. 132, 281–288.
  • 65. Himmelstein M.W., Acquavella J.F., Recio L., Medinsky M.A., Bond J.A. (1997). Toxicology and epidemiology of 1,3-butadiene. Crit. Rev. Toxicol. 27, 1–108.
  • 66. IARC (1992). Monograph on 1,3-butadiene. IARC monographs on the evaluation of the carcinogenic risk to humans. Vol. 54. Lyon, 237–285.
  • 67. IARC (1999). Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. IARC monographs on the evaluation of the carcinogenic risk to humans. Vol. 71. Lyon, 17–24.
  • 68. IARC (2008). 1,3-Butadiene, ethylene oxide and vinyl halides (vinyl fluoride, vinyl chloride and vinyl bromide). IARC monographs on the evaluation of the carcinogenic risk to humans. Vol. 97. Lyon.
  • 69. IARC (2012). Monograph on 1,3-butadiene. IARC Monographs on the Evaluation of the Carcinogenic Risk to Humans. Vol. 100F. Lyon.
  • 70. IMP (2017). Centralny Rejestr Danych o Narażeniu na Substancje, Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym. Łódź [dane niepublikowane].
  • 71. IOM, Institute of Occupational Medicine Research (2011). Project: P937/19. May 2011.
  • 72. Irons R.D., Smith C.N., Stillman W.S., Shah R.S., Steinhagen W.H., Leiderman L.J. (1986a). Macrocitic-megaloblastic anemia in male B6C3F1 mice following chronic exposure to 1,3-butadiene. Toxicol. Appl. Pharmacol. 83, 95–100.
  • 73. Irons R.D., Smith C.N., Stillman W.S., Shah R.S., Steinhagen W.H., Leiderman L.J. (1986b). Macrociticmegaloblastic anemia in male NIH Swiss mice following chronic exposure to 1,3-butadiene. Toxicol. Appl. Pharmacol. 85, 450–455.
  • 74. Irons R.D., Oshimura M., Barrett J.C. (1987). Chromosome aberrations in mouse bone marrow cells following in vivo exposure to 1,3-butadiene. Carcinogenesis 8, 1711–1714.
  • 75. Jackson T.E., Lilly P.D., Recio L., Schlosser P.M., Medinsky M.A. (2000). Inhibition of cytochrome P450 2E1 decreases, but not eliminate, genotoxicity mediated by 1,3-butadiene. Toxicol. Sci. 55, 266–273.
  • 76. Kelsey K.T., Wiencke J.K., Ward J., Bechtold W., Fajen J. (1995). Sister-chromatid exchanges, glutathione S-transferase theta deletion cytogenetic sensitivity to diepoxybutane in lymphocytes from butadiene monomer production workers. Mutat. Res. 335, 267–273.
  • 77. Koc H., Tretyakova N.Y., Walker V.E., Henderson R.F., Swenberg J.A. (1999). Molecular dosimetry of N-7guanine adduct formation in mice and rats exposed to 1,3-butadiene. Chem. Res. Toxicol. 12, 566–574.
  • 78. Koivisto P., Sorsa M., Pacchierotti F., Peltonen K. (1997). 32P-postlabelling/HPLC assay reveals an enantioselective adduct formation in N7 guanine residues in vivo after 1,3-butadiene inhalation exposure. Carcinogenesis 18(2), 439–443.
  • 79. Koivisto P., Adler I.D., Pacchierotti F., Peltonen K. (1998). DNA adducts in mouse testes and lung after inhalation exposure to 1,3-butadiene. Mutat. Res. 397, 3–10.
  • 80. Krause R.J., Elfarra A.A. (1997). Oxidation of butadiene monoxide to meso- and (+/-)-diepoxybutane by cDNA expressed human cytochrome P450s and by mouse, rat, and human liver microsomes: evidence for preferential hydration of meso-diepoxybutane in rat and human liver microsomes. Arch. Biochem. Biophys. 337, 176–184.
  • 81. Kreiling R., Laib R.J., Bolt H.M. (1986). Alkylation of nuclear proteins and DNA after exposure of rats and mice to [1,4-14C] 1,3-butadiene. Toxicol. Lett. 30, 131–136.
  • 82. Landi S., Ponzanelli I., Hirvonen A., Norppa H., Barale R. (1996). Repeated analysis of sister chromatid exchanges induction by diepoxybutane in cultured human lymphocytes: effect of glutathione S-transferase T1 and M1 genotype. Mutat. Res. 351, 79–85.
  • 83. Lawley P.D., Brookes P. (1967). Interstrand cross-linking of DNA by difunctional alkylating agents. J. Mol. Biol. 25, 143–160.
  • 84. Lemen R.A., Meinhardt T.J., Crandall M.S., Fajen J.M., Brown D.P. (1990). Environmental epidemiologic investigations in the styrene-butadiene rubber production industry. Environ. Health Perspect. 86, 103–106.
  • 85. Leiderman L.J., Stillman W.S., Shah R.S., Steinhagen W.H., Irons R.D. (1986). Altered hematopoietic stem cell development in male B6C3F1 mice following to 1,3-budiene. Exp. Mol. Pathol. 44, 50–56.
  • 86. Macaluso M., Larson R., Delzell E., Sathiakumar N., Hovinga M., Julian J., Muir D., Cole P. (1996). Leukemia and cumulative exposure to butadiene, styrene and benzene among workers in the synthetic rubber industry. Toxicology 113, 190–202.
  • 87. Macaluso M., Larson R., Lynch J., Lipton S., Delzell E. (2004). Historical estimation of exposure to 1,3-butadiene, styrene, and dimethyldithiocarbamate among synthetic rubber workers. J. Occup. Environ. Hyg. 1, 371–390.
  • 88. MAK (2010). 1,3-Butadiene. The MAK-Collection Part IV: BAT Value Documentations. Vol. 5. DFG, Deutsche Forschungsgemeinschaft.
  • 89. MAK (2013). Addendum zu 1,3-Butadien. BAT Value Documentations. Deutsche Forschungsgemeinschaft.
  • 90. Matanoski G., Schwartz L. (1987). Mortality of workers in styrene-butadiene polymer production. J. Occup. Med. 29, 675–680.
  • 91. Matanoski G.M., Santos-Burgoa C., Schwartz L. (1990). Mortality of a cohort of workers in the styrene- butadiene polymer manufacturing industry 1943-1982. Environ. Health Perspect. 86, 107–117.
  • 92. Matanoski G., Francis M., Correa-Villasenor A., Elliott E., Santos-Burgoa C., Schwartz L. (1993). Cancer epidemiology among styrene-butadiene rubber workers. IARC Sci. Publ. 127, 363–374 [cyt. za: IARC 2012].
  • 93. Matanoski G., Elliott E., Tao X., Francis M., Correa-Villasenor A., Santos-Burgoa C. (1997). Lymphohematopoietic cancer and butadiene and styrene exposure in synthetic rubber manufacture. Ann. N.Y. Acad. Sci. 837, 157–169.
  • 94. McGregor D.B. Brown A., Cattanach P., Edwards I., McBride D., Caspary W.J. (1988). Responses of the 15178Y tk+/tk- mouse lymphoma cell forward mutation assay: 18 Coded chemicals. Environ. Mol. Mutag. 11(1), 91–118 [cyt. za: IARC 1992].
  • 95. McMichael A.J., Spirtas R., Kupper L.L. (1974). An epidemiological study of mortality within a cohort of rubber workers, 1964-1972. J. Occup. Med. 16, 458–464.
  • 96. McMichael A.J., Spirtas R., Gamble J.F., Tousey P.M. (1976). Mortality among workers. Relationship to specific jobs. J. Occup. Med. 18, 178–185.
  • 97. Meinhardt T.J., Lemen R.A., Crandall M.S., Young R.J. (1982). Environmental epidemiologic investigation of the styrene-butadiene rubber industry. Mortality patterns with discussion of the hematopoietic and lymphatic malignancies. Scan. J. Work Environ. Health 8, 250–259.
  • 98. Melnick R.L., Huff J., Chou B.J., Miller R.A. (1990). Carcinogenicity of 1,3-butadiene in C57BL/6 x C3HF1mice at low exposure concentrations. Cancer. Res. 50, 6592–6599. Melnick R.L., Kohn M.C. (1995). Mechanistic data indicate that 1,3-butadiene is a human carcinogen. Carcinogenesis 16(2), 157–163.
  • 99. Meng Q., Walker D.M., McDonald J.D., Henderson R.F., Carter M.M., Cook D.L. Jr, McCash C.L., Torres S.M., Bauer M.J., Seilkop S.K., Upton P.B., Georgieva N.I., Boysen G., Swenberg J.A., Walker V.E. (2007). Age-, gender-, and species-dependent mutagenicity in T cells of mice and rats exposed by inhalation to 1,3-butadiene. Chem. Biol. Interact. 166, 121–131.
  • 100. Morrissey R.E., Schwetz B.A., Hackett P.L., Sikov M.R., Hardin B.D., McClanahan B.J., Decker J.R., Mast T.J. (1990). Overview of reproductive and developmental toxicity studies of 1,3-butadiene in rodents. Environ. Health Perspect. 86, 79–84.
  • 101. NIOSH (1977). Proceedings of NIOSH styrene-butadiene conference. NTIS Pub. No. PB-275-589, Springfield, VA.
  • 102. Norppa H., Hirvonen A., Jarventaus H., Uuskula M., Tasa G., Ojajarvi A., Sorsa M. (1995). Role of GSTT1 and GSTM1 genotypes in determining individual sensitivity to sister chromatid exchange induction by diepoxybutane in cultured human lymphocytes. Carcinogenesis 16, 1261– 1264.
  • 103. NTP (1984). NTP technical report on the toxicology and carcinogenesis studies of 1,3-butadiene (CAS No 106-99- 0) in B6C3F1 mice (inhalation studies).
  • 104. NTP (1987). Inhalation developmental toxicology studies of 1,3-butadiene (CAS 106-99-0) in the rat. NTP (1993). Toxicology and carcinogenesis studies of 1,3-budatiene (CAS 106-99-0) in B6C3F1 mice (inhalation studies).
  • 105. NTP (2016). 1,3-Butadiene. Report on Carcinogens, Fourteenth Edition.
  • 106. 106. Osterman-Golkar S., Bond J.S. (1996). Biomonitoring of 1,3-butadiene and related compounds. Environ. Health Perspect. 104(5), 907–915.
  • 107. Owen P.E., Glaister J.R., Gaunt I.F., Pullinger D.H. (1987). Inhalation toxicity studies with 1,3-butadiene 3. Two year toxicity/carcinogenicity study in rats. Am. Ind. Hyg. Assoc. J. 48, 407–413.
  • 108. Pacchierotti F., Tiveron C., Ranaldi R., Bassani B., Cordelli E., Leter G., Spano M. (1998). Reproductive toxicity of 1,3-butadiene in the mouse: analysis of chromosome aberrations in first-cleavage embryos and flow cytometric evaluation of spermatogonial cell killing. Mutat. Res. 397, 55–66.
  • 109. Pelin K., Hirvonen A., Norppa H. (1996). Influence of erythrocyte glutathione S-transferase T1 on sister chromatid exchanges induced by diepoxybutane in cultured human lymphocytes. Mutagenesis 11(2), 213– 215.
  • 110. Porfirio B., Dallapiccola B., Mokini V., Alimena G., Gandini E. (1983). Failure of diepoxybutane to enhance sister-chromatid exchange levels in Fanconi's anemia patients and heterozygotes. Hum. Genet. 63, 117–120 [cyt. za: IARC 1992].
  • 111. Powley M.W., Li Y., Upton P.B., Walker V.E., Swenberg J.A. (2005). Quantification of DNA and hemoglobin adducts of 3,4-epoxy-1,2-butanediol in rodents exposed to 3-butane-1,2-diol. Carcinogenesis 26, 1573–1580.
  • 112. Przygoda R.T., Bird M.G., Whitman F.T., Wojcik N.C., Mc Kee R.H. (1993). Induction of micronuclei in mice and hamsters by 1,3-butadiene. Environ. Mol. Mutagen. 21 (suppl. 22), 56.
  • 113. Ripp G. (1968). Toxicohygienic characteristics of 1,3-butadiene in the atmosphere. Naush. Tr. Ornsk. Med. Inst. 88, 10 [cyt. za: NTP 1984].
  • 114. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16 grudnia 2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/648/ EWG i 1999/45/WE oraz zmieniające rozporządzenie WE nr 1907/2006 (tzw. rozporządzenie CLP). Dz. Urz. UE L 353 z dnia 31.12.2008 r. z późn. zm.
  • 115. Rozporządzenie Ministra Zdrowia z dnia 24 lipca 2012 r. w sprawie substancji chemicznych, ich mieszanin, czynników lub procesów technologicznych o działaniu rakotwórczym lub mutagennym w środowisku pracy. Tekst jednolity DzU 2016, poz. 1117.
  • 116. Rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 6 czerwca 2014 r. w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy. DzU 2014, poz. 817 z późn. zm.
  • 117. RTECS, Registry of Toxic Effects on Chemical Substances (2012). 1,3-Butadiene. Review date: 2011.
  • 118. Santos-Burgoa C., Matanoski G.M., Zeger S., Schwartz L. (1992). Lymphohematopoietic cancer in styrene-butadiene polymerization workers. Am. J. Epidemiol. 136, 843–854.
  • 119. Sasiadek M., Jarventaus H., Sorsa M. (1991a). Sisterchromatid exchanges induced by 1,3-butadiene and its epoxides in CHO cells. Mutat. Res. 263, 47–50.
  • 120. Sasiadek M., Norppa H., Sorsa M. (1991b). 1,3-Butadiene and its epoxides induce sister-chromatid exchanges in human lymphocytes in vitro. Mutat. Res. 261, 117–121.
  • 121. Sathiakumar N., Brill I., Delzell E. (2009). 1,3-Butadiene, styrene and lung cancer among synthetic rubber industry workers. J. Occup. Environ. Med. 51(11), 1326–1332.
  • 122. Sathiakumar N., Brill I., Leader M., Delzell E. (2015). 1,3-Butadiene, styrene and lymphohematopoietic cancer among male synthetic rubber industry workers – preliminary exposure-response analyses. Chem. Biol. Interact. 241, 40–49.
  • 123. Sathiakumar N., Delzell E., Hovinga M., Macaluso M., Julian J.A., Larson R., Cole P., Muir D.C. (1998). Mortality from cancer and other causes of death among synthetic rubber workers. Occup. Environ. Med. 55, 230–235.
  • 124. Sathiakumar N., Delzell E. (2007). A follow-up study of women in the synthetic rubber industry: study methods. Chem. Biol. Interact. 166, 25–28.
  • 125. Sathiakumar N., Delzell E. (2009). A follow-up study of mortality among women in the North American synthetic rubber industry. J. Occup. Environ. Med. 51, 1314–1325.
  • 126. Sathiakumar N., Graff J., Macaluso M., Maldonado G., Matthews R., Delzell E. (2005). An update study of mortality among North American synthetic rubber industry workers. Occup. Environ. Med. 62, 822–829.
  • 127. SCOEL (2007). Recommendation from Scientific Committee on Occupational Exposure Limits. Risk assessment for 1,3-butadiene. SCOEL/SUM/75.
  • 128. Seaton M.J., Follansbee M.H., Bond J.A. (1995). Oxidation of 1,2-epoxy-3-butene to 1,2,:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat microsomes. Carcinogenesis 16(10), 2287–2293.
  • 129. Sernau R., Cavagnaro J., Kehn P. (1986). 1,3-Butadiene as an S9 activation-dependent gaseous positive control substance in L5178Y cell mutation assays. Environ. Mutagen. (suppl. 8), 75 [abstract].
  • 130. Sharief Y., Brown A.M., Backer L.C., Campbell J.A., Westbrook-Collins B., Stead A.G., Allen J.W. (1986). Sister chromatid exchange and chromosome aberration analyses in mice after in vivo exposure to acrylonitrile, styrene, or butadiene monoxide. Environ. Mutag. 8, 439–448 [cyt. za: IARC 1992].
  • 131. Shelby M.D. (1990). Results of NTP-sponsored mouse cytogenetic studies on 1,3-butadiene, isoprene, and chloroprene. Environ. Health Perspect. 86, 71–73. 132. Shimkin M.B., Weisburger J.W., Weisburger E.K., Gubareff N., Suntzeff V. (1966). Bioassay of 29 alkylating chemicals by the pulmonary-tumor response in strain A mice. J. Natl. Cancer Inst. 36, 915–935.
  • 133. Sielken R.L., Valdez-Flores C. (2015). A comprehensive review of occupational and general population cancer risk: 1,3-butadiene exposure-response modeling for allleukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, myeloid neoplasm and lymphoid neoplasm. Chem. Biol. Interact. 241, 50–58.
  • 134. Sitarek K., Szymczak W. (2009). Buta-1,3-dien. Dokumentacja dopuszczalnych wielkości narażenia zawodowego. PiMOŚP 4(62), 27–58. 135. Sitarek K., Szymczak W. (2012). Buta-1,3-dien. Wytyczne Szacowania Ryzyka Zdrowotnego 1(30), 41–77.
  • 135. Sorsa M., Osterman-Golkar S., Peltonen K., Saarikoski S.T., Sram R. (1996a). Assessment of exposure to butadiene in the process industry. Toxicology 113, 77–83.
  • 136. Sorsa M., Peltonen K., Anderson D., Demopoulos N.A., Neumann H.G., Osterman-Golkar S. (1996b). Assessment of environmental and occupational exposure to butadiene as a model for risk estimation of petrochemical emissions. Mutagenesis 11, 9–17.
  • 137. Stephanou G., Russo A., Vlastos D., Andrianopoulos C., Demopoulos N.A. (1998). Micronucleus induction In somatic cells of mice as evaluated after 1,3-butadiene inhalation. Mutat. Res. 397, 11–20.
  • 138. Swenberg J.A., Bordeerat N.K., Boysen G., Carro S., Georgieva N.I., Nakamura J., Troutman J.M., Upton PB, Albertini R.J., Vacek P.M., Walker V.E., Sram R.J., Goggin M., Tretyakova N. (2011). 1,3-Butadiene: biomarkers and application to risk assessment. Chem. Biol. Interact. 192(1-2), 150–154. 139. Tates A.D., van Dam F.J., de Zwart F.A., Darroudi F., Natarajan A.T., Rossner P., Peterkova K., Peltonen K., Demopoulos N.A., Stephanou G., Vlachodimitropoulos D., Sram R.J. (1996). Biological effect monitoring in industrial workers from the Czech Republic exposed to low levels of butadiene. Toxicology 113, 91–99.
  • 139. Thier R., Pemble S.E., Kramer H., Taylor J.B., Guengerich F.P., Ketterer B. (1996). Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium. Carcinogenesis 17, 163–166.
  • 140. Thornton-Manning J.R., Dahl A.R., Bechtold W.E., Griffith W.C. Jr, Henderson R.F. (1995). Disposition of butadiene monoepoxide and butadiene diepoxide in various tissues of rats and mice following a low-level inhalation exposure to 1,3-butadiene. Carcinogenesis 16, 8, 1723–1731.
  • 141. Thornton-Manning J.R., Dahl A.R., Bechtold W.E., Griffith W.C. Jr, Henderson R.F. (1997). Comparison of the disposition of butadiene epoxides in Sprague-Dawley rats and B6C3Fj mice following a single and repeated exposures to 1,3-butadiene via inhalation. Toxicology 123, 125–134.
  • 142. Thornton-Manning J.R., Dahl A.R., Allen M.L., Bechtold W.E., Griffith W.C. Jr, Henderson R.F. (1998). Disposition of butadiene epoxides in Sprague- Dawley rats following exposures to 8000 ppm 1,3-butadiene: comparison with tissue epoxide concentrations following low level exposures. Toxicol. Sci. 41, 167–173.
  • 143. Thurmond L.M., Lauer L.D., House R.V., Stillman W.S., Irons R.D., Steinhagen W.H., Dean J.H. (1986). Effect of short-term inhalation exposure to 1,3-butadiene on murine immune functions. Toxicol. Appl. Pharmacol. 86, 170–179.
  • 144. Tice R.R., Boucher R., Luke C.A., Shelby M.D. (1987). Comparative cytogenetic analysis of bone marrow damage induced by male B6C3Fi mice by multiple exposures to gaseous 1,3-butadiene. Environ. Mutagen. 9, 235–250.
  • 145. Tommasi A.M., de Conti S., Dobrzyńska M.M., Russo A. (1998). Evaluation and characterization of micronuclei in early spermatids of mice exposed to 1,3-butadiene. Mutat. Res. 397, 45–54.
  • 146. Toxicological Profile for 1,3-Butadiene (1992). U.S. Department of Health & Human Services.
  • 147. Tretyakova N.Y., Sangaiah R., Yen T.Y., Swenberg J.A. (1997). Synthesis, characterization, and in vitro quantitation of N-7-guanine adducts of diepoxybutane. Chem. Res. Toxicol. 10, 779–785.
  • 148. Tretyakova N.Y., Chiang S.Y., Walker V.E., Swenberg J.A. (1998). Quantitative analysis of 1,3-butadieneinduced DNA adducts in vivo and in vitro using liquid chromatography electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 33, 363–376.
  • 149. Tsai S.P., Wendt J.K., Ransdell J.D. (2001). A mortality, morbidity, and hematology study of petrochemical employees potentially exposed to 1,3-butadiene monomer. Chem. Biol. Interact. 135-136, 555–567.
  • 150. Uuskula M., Jarventaus H., Hirvonen A., Sorsa M., Norppa H. (1995). Influence of GSTM1 genotype on sister-chromatid exchange induction by styrene-7,8-oxide and 1,2-epoxy-3-butene in cultured human lymphocytes. Carcinogenesis 16(4), 947–950.
  • 151. Van Duuren B.L., Nelson N., Orris L., Palmes E.D., Schmitt F.L. (1963). Carcinogenicity of epoxides, lactones, and peroxy compounds. J. Natl. Cancer Inst. 3, 41–55.
  • 152. Van Duuren B.L., Orris L., Nelson N. (1965). Carcinogenicity of epoxides, lactones, and peroxy compounds. Part II. J. Natl. Cancer Inst. 35, 707–717. 153. Van Duuren B.L., Langseth L., Orris L., Teebor G., Nelson N., Kuschner M. (1966). Carcinogenity of epoxides, lactones, and peroxy compounds. IV. Tumor response in epithelial and connective tissue in mice and rats. J. Natl. Cancer Inst. 37, 825–832.
  • 154. van Sittert N.J., Megens H.J., Watson W.P., Boogaard P.J. (2000). Biomarkers of exposure to 1,3-butadiene as a basis for cancer assessment. Toxicol. Sci. 56(1), 189–202.
  • 155. Vangala R.R., Laib R.J., Bolt H.M. (1993). Evaluation of DNA damage by alkaline elution technique after inhalation exposure of rats and mice to 1,3-butadiene. Arch. Toxicol. 67, 34–38.
  • 156. Vincent D.R., Arce G.T., Sarrif A.M. (1986). Genotoxicity of 1,3-butadiene. Assessment by the unscheduled DNA synthesis assay in B6C3Fj mice and Sprague-Dawley rats in vivo and in vitro. Environ. Mutagen. suppl. 8, 88.
  • 157. Vlachodimitropoulos D., Norppa H., Autio K., Catalan J., Hirvonen A., Tasa G., Uuskula M., Demopoulos N.A., Sorsa M. (1997). GSTT1-dependent induction of centromere-negative and positive micronuclei by 1,2,3,4-diepoxybutane in cultured human lymphocytes. Mutagenesis 12(5), 397–403.
  • 158. Wade M.J., Moyer J.W., Hine C.H. (1979). Mutagenic action of series of exposides. Mutat. Res. 66, 367–371.
  • 159. Walles S.A., Victorin K., Lundborg M. (1995). DNA damage in lung cells in vivo and in vitro by 1,3-butadiene and nitrogen dioxide and their photochemical reaction products. Mutat. Res. 328, 11–19.
  • 160. Ward E.M., Fajen J.M., Ruder A.M., Rinsky R.A., Halperin W.E., Fessler-Flesch C.A. (1995). Mortality study of workers in 1,3-butadiene production units identified from a chemical workers cohort. Environ. Health Perspect. 103(6), 598–603.
  • 161. Ward E.M., Fajen J.M., Ruder A.M., Rinsky R.A., Halperin W.E., Fessler-Flesch C.A. (1996). Mortality study of workers employed in 1,3-butadiene production units identified from a chemical workers cohort. Toxicology 113, 157–168.
  • 162. Wen Y., Zhang P.P., An J., Yu Y.X., Wu M.H., Sheng G.Y., Fu J.M., Zhang X.Y. (2011). Diepoxybutane induces the formation of DNA-DNA rather than DNA-protein cross- -links, and single-strand breaks and alkali-labile sites in human hepatocyte L02 cells. Mutat. Res. 716, 84–91.
  • 163. Whitworth K.W., Symanski E., Coker A.L. (2008). Childhood lymphohematopoietic cancer incidence and hazardous air pollutants in southeast Texas, 1995-2004. Environ. Health Perspect. 116, 1576–1580. 164. Wilson R.H. (1944). Health hazards encountered in the manufacture of synthetic rubber. J. Am. Med. Assoc. 124, 701–703.
  • 164. Wojciechowska U., Didkowska J., Tarkowski W., Zatoński W. (2004). Nowotwory złośliwe w Polsce w 2002 roku. Warszawa, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie.
  • 165. Wojciechowska U., Didkowska J., Tarkowski W., Zatoński W. (2005). Nowotwory złośliwe w Polsce w 2003 roku. Warszawa, Centrum Onkologii – Instytut im. Marii Skłodowskiej-Curie.
  • 166. Wojciechowska U., Didkowska J., Zatoński W. (2006). Nowotwory złośliwe w Polsce w 2004 roku. Warszawa, Centrum Onkologii – Instytut im. Marii Skłodowskiej Curie.
  • 167. Wojciechowska U., Didkowska J., Zatoński W. (2008). Nowotwory złośliwe w Polsce w 2006 roku. Warszawa, Centrum Onkologii – Instytut im. Marii Skłodowskiej- -Curie.
  • 168. Wojciechowska U., Didkowska J., Zatoński W. (2010). Nowotwory złośliwe w Polsce w 2008 roku. Warszawa, Centrum Onkologii – Instytut im. Marii Skłodowskiej Curie.
  • 169. Xiao Y., Tates A.D. (1995). Clastogenic effects of 1,3-butadiene and its metabolites 1,2-epoxybutene and 1,2,3,4-diepoxybutane in splenocytes and germ cells of rats and mice in vivo. Environ. Mol. Mutagen. 26, 97–108.
  • 170. Zhang P.P., Wen Y., An J., Yu Y.X., Wu M.H., Zhang X.Y. (2012). DNA damage induced by three major metabolites of 1,3-butadiene in human hepatocyte L02 cells. Mutat. Res. 747, 240–245.
  • 171. Zhao C., Vodicka P., Sram R.J., Hemminki K. (2000). Human DNA adducts of 1,3-butadiene, an important environmental carcinogen. Carcinogenesis 21, 107–111.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51913818-200c-43f5-a178-9be1e865a737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.