PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluid-Structure Interaction Modeling of Aortic Valve Stenosis at Different Heart Rates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper proposes a model to measure the cardiac output and stroke volume at different aortic stenosis severities using a fluid–structure interaction (FSI) simulation at rest and during exercise. Methods: The geometry of the aortic valve is generated using echocardiographic imaging. An Arbitrary Lagrangian–Eulerian mesh was generated in order to perform the FSI simulations. Pressure loads on ventricular and aortic sides were applied as boundary conditions. Results: FSI modeling results for the increment rate of cardiac output and stroke volume to heart rate, were about 58.6% and –14%, respectively, at each different stenosis severity. The mean gradient of curves of cardiac output and stroke volume to stenosis severity were reduced by 57% and 48%, respectively, when stenosis severity varied from healthy to critical stenosis. Conclusions: Results of this paper confirm the promising potential of computational modeling capabilities for clinical diagnosis and measurements to predict stenosed aortic valve parameters including cardiac output and stroke volume at different heart rates.
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 30 poz., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Tennessee Technological University, Cookeville, USA
  • Department of Mechanical Engineering, Tennessee Technological University, Cookeville, USA
  • Johns Hopkins Hospital, Baltimore, USA
autor
  • School of Mechanical Engineering, University of Birmingham, Birmingham, England, UK
Bibliografia
  • [1]. Bache R.J, Wang Y., Jorgensen C.R. Hemodynamic effects of exercise in isolated valvular aortic stenosis. Circulation. 1971, vol. 44(6), 1003-1013.
  • [2]. Bahraseman H.G., Hassani K., Khosravi A., Navidbakhsh M., Espino D.M., Fatouraee N., Kazemi-Saleh. Combining numerical and clinical methods to assess aortic valve hemodynamics during exercise. Perfusion 2014, vol. 29(4), 340-350.
  • [3]. Bahraseman H.G., Hassani K., Navidbakhsh M., Espino D.M., Sani Z.A., Fatouraee N. Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Comput Methods Biomech Biomed Engin. 2014, vol. 17(16), 1821-1834.
  • [4]. Bonow R.O., Mann D.L., Zipes D.P., Libby P. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 9th ed. Philadelphia, Pa: Saunders Elsevier. 2011.
  • [5]. Caro C.G., Pedley T.J., Schroter R.C., Seed W.A. The mechanics of the circulation. Oxford: Oxford University Press. 1978.
  • [6]. Christie J., Sheldahl L.M., Tristani F.E., Sagar K.B., Ptacin M.J., Wann S. Determination of stroke volume and cardiac output during exercise: comparison of two-dimensional and Doppler echocardiography, Fick oximetry, and thermodilution. Circulation, 1987, vol. 76(3), 539-547.
  • [7]. Comsol Users Manual. Comsol Multiphysics Users Guide. Londen: Comsol Ltd. 2011.
  • [8]. Criner G.J., Barnette R.E., Alonzo G.E. Critical Care Study Guide: Text and Review. New York: Springer. 2010.
  • [9]. De Paulis R., Salica A., Pisani G., Morbiducci U., Weltert L., Maselli D. Hemodynamics of the aortic valve and root: implications for surgery. Ann Cardiothorac Surg, 1987, vol. 2(1), 40.
  • [10]. Donea J., Giuliani S., Halleux J.P. An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng, 1982, vol. 33(1-3), 689 –723.
  • [11]. Dowell E.H., Hall K.C. Modelling of fluid-structure interaction. Annu Rev Fluid Mech. 2001, vol. 33(1), 445-490.
  • [12]. Espino D.M., Shepherd D.E.T., Hukins D.W.L. A simple method for contact modelling in an arbitrary frame of reference within multi¬physics software. J Mech, 2013, vol. 29(3), N9-N14.
  • [13]. Espino D.M., Shepherd D.E.T., Hukins D.W.L. Development of a transient large strain contact method for biological heart valve simulations. Comput Methods Biomech Biomed Engin, 2013, vol. 16(4), 413-424.
  • [14]. Espino D.M., Shepherd D.E.T., Hukins D.W.L. Evaluation of a transient, simultaneous, Arbitrary Lagrange Euler based multi-physics method for simulating the mitral heart valve. Comput Methods Biomech Biomed Engin, 2014, vol. 17(4), 450-458.
  • [15]. Weinberg E.J., Kaazempur Mofrad M.R. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech, 2008, vol. 41(16), 3482-3487.
  • [16]. Gould K., Carabello B. Why Angina in Aortic Stenosis With Normal Coronary Arteriograms? Circulation, 2003, vol. 107, 3121–3123.
  • [17]. Govindarajan V., Udaykumar H.S, Herbertson L.H., Deutsch S., Manning K.B, Chandran K.B. Two-Dimensional FSI Simulation of Closing Dynamics of a Tilting Disk Mechanical Heart Valve. J Med Devices, 2010, vol. 4(1), 011001(1-11).
  • [18]. Gurvitch R., Cheung A., Bedogni F., Webb J.G. Coronary obstruction following transcatheter aortic valve-in-valve implantation for failed surgical bioprostheses. Catheter Cardiovasc Interv. 2011, vol. 77(3), 445-446.
  • [19]. Hammerstingl C., Nickenig G., Grube E. Treatment of a degenerative stenosed CoreValve® aortic bioprosthesis by transcatheter valve-in-valve insertion. Catheter Cardiovasc Interv, 2012, vol. 79(5), 748-755.
  • [20]. Koch T.M., Reddy B.D., Zilla P., Franz T. Aortic valve leaflet mechanical properties facilitate diastolic valve function. Comput Methods Biomech Biomed Engin, 2010, vol. 13(2), 225-234.
  • [21]. Kuan M.Y.S., Espino D.M. Systolic fluid-structure interaction model of the congenitally bicuspid aortic valve: assessment of modelling requirement. Comput Methods Biomech Biomed Eng. In Press DOI: 10.1080/10255842.2014.900663
  • [22]. Lamata P., Pitcher A., Krittian S., Nordsletten D., Bissell M.M., Cassar T., Barker A.J., Markl M., Neubauer S., Smith N.P. Aortic relative pressure components derived from fourdimensional flow cardiovascular magnetic resonance. Magn Reson Med, 2014 vol. 72(4), 1162-1169.
  • [23]. Lavdaniti M. Invasive and non-invasive methods for cardiac output measurement. Int J Caring Sci, 2008, vol. 1(3), 112–117.
  • [24]. Lindroos M., Kupari M., Heikkilä J., Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol, 1993, vol. 21(5), 1220-1225.
  • [25]. Lund O., Emmertsen K., Dorup I., Jensen F., Flo C. Regression of Left Ventricular Hypertrophy During 10 Years After Valve Replacement for Aortic Stenosis is Related to the Preoperative Risk Profile Eur Heart J, 2003, vol. 24, 1437–1446.
  • [26]. Murphy S.L., Xu J. Deaths: Preliminary Data for 2010. 1st ed. Atlanta: National Vital Statistics Reports. 2012.
  • [27]. Park S.H., Lee S.J., Kim J.Y., Kim M.J., Lee J.Y., Cho A.R., Lee H.G., Lee S.W., Shin W.Y., Jin D.K. Direct Comparison between Brachial Pressure Obtained by Oscillometric Method and Aortic Pressure Using Invasive Method. J Soonchunhyang Medical Science, 2011, vol. 17(2), 65-71.
  • [28]. Rajappan K., Rimoldi O., Dutka D., Ariff B., Pennell D., Sheridan D., Camici P. Mechanisms of Coronary Microcirculatory Dysfunction in Patients With Aortic Stenosis and Angiographically Normal Coronary Arteries. Circulation. 2002, vol. 105, 470–476.
  • [29] RAZMINIA M., TRIVEDI A., MOLNAR J., ELBZOUR M., GUERRERO M., SALEM Y., LUBELL D.L., Validation of a new formula for mean arterial pressure calculation: the new formula is superior to the standard formula, Catheter Cardiovasc. Interv., 2004, Vol. 63(4), 419–425.
  • [30] STOUFFER G.A., Aortic regurgitation. Cardiovascular Hemodynamics for the Clinician, Wiley-Blackwell, Oxford 2008.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5190439f-2eac-4586-aaba-47c1658124b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.