PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of manufacturing process chain for pearlitic and bainitic steel rails

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computer system for the design of technology of the manufacturing of pearlitic and bainitic rails was presented in this paper. The system consists of the FEM simulation module of thermal–mechanical phenomena and microstructure evolution during hot rolling integrated with the module of phase transformation occurring during cooling. Model parameters were identified based on dilatometric tests. Physical simulations, including Gleeble tests, were used for validation and verification of the models. In the case of pearlitic steels, the process of subsequent immersions of the rail head in the polymer solution was numerically simulated. The objective function in the optimization procedure was composed of minimum interlamellar spacing and maximum hardness. Cooling in the air at a cooling bed was simulated for the bainitic steel rails and mechanical properties were predicted. The obtained results allowed us to formulate technological guidelines for the process of accelerated cooling of rails.
Rocznik
Strony
125--142
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12, 44-100 Gliwice, Poland
  • ArcelorMittal Poland, al. Józefa Piłsudskiego 92, 41-308 Dąbrowa Górnicza, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Kuziak R, Zygmunt T. A new method of rail head hardening of standard-gauge rails for improved wear and damage resistance. Steel Res Int. 2013;84:13–9.
  • [2] Bhadeshia HKDH. Novel steels for rails. In: Buschow K, Cahn RW, Flemings MC, Iischner B, Kramer EJ, Mahajan S, editors. Encyclopedia of materials science: science and technology. Oxford: Pergamon Press; 2002. p. 1–7.
  • [3] Zajac S, Schwinn V, Tacke KH. Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels. Mater Sci Forum. 2005;500–501:387–94.
  • [4] Hiramatsu H, Egashira T, Yuta K, Nakamata S. Temperature distribution of structural sections during hot rolling. Tetsu-to-Hagane. 1970;56:1891–8 (in Japanese).
  • [5] Gołdasz A, Malinowski Z, Hadała B, Rywotycki M. Influence of the radiation shield on the temperature of rails rolled in the reversing mill. Arch Metall Mater. 2015;60:275–9.
  • [6] Głowacki M. Simulation of rail rolling using the generalized plane-strain finite-element approach. J Mater Process Technol. 1996;62:229–34.
  • [7] Głowacki M, Kuziak R, Malinowski Z, Pietrzyk M. Modelling of heat transfer, plastic flow and microstructural evolution during shape rolling. J Mater Process Technol. 1995;53:159–66.
  • [8] Głowacki M. The mathematical modelling of thermo-mechanical processing of steel during multi-pass shape rolling. J Mater Process Technol. 2005;168:336–43.
  • [9] Lindback TE, Nasstrom M. Residual stresses in railway rails after manufacturing. In: Mori K, editor. Proceedings of Conference NUMIFORM, Toyohashi, 2001; pp. 567–576.
  • [10] Guerrero MA, Belzunce J, Betegón MC, Jorge J, Vigil FJ. Hot rolling process simulation. Application to UIC-60 rail rolling, Proceedings of the 4th IASME/WSEAS International Conference on Continuum Mechanics, Cambridge, 2009; pp. 213–218.
  • [11] Janiyani SG, Solanki PD. Simulation of roll passes for section rolling of flat-footed rail section with the help of FEA. Int J Eng Res Technol. 2012;1:1–6.
  • [12] Kim SY, Im Y-T. Three dimensional finite element analysis of non-isothermal shape rolling. J Mater Process Technol. 2002;127:57–63.
  • [13] Altınkaya H, Orak IM, Esen I. Artificial neural network application for modeling the rail rolling process. Expert Syst Appl. 2014;41:7135–46.
  • [14] Sahay SS, Mohapatra G, Totten GE. Overview of pearlitic rail steels: accelerated cooling, quenching, microstructure and mechanical properties. J ASTM Int. 2009;6:1–26.
  • [15] Perez-Unzueta AJ, Beynon JH. Microstructure and wear resistance of pearlitic rail steels. Wear. 1993;162–164:173–82.
  • [16] Szeliga D, Kuziak R, Zygmunt T, Kusiak J, Pietrzyk M. Selection of parameters of the heat treatment thermal cycle for rails with respect to the wear resistance. Steel Res Int. 2014;85:1070–82.
  • [17] Boyadiev II, Thomson PF, Lam YC. Computation of the diffusional transformation of continuously cooled austenite for predicting the coefficient of thermal expansion in the numerical analysis of thermal stress. ISIJ Int. 1996;36:1413–9.
  • [18] Lee K-M, Polycarpou AA. Microscale experimental and modelling wear studies of rail steels. Wear. 2011;271:1174–80.
  • [19] Kuziak R, Cheng Y-W, Głowacki M, Pietrzyk M. Modelling of the microstructure and mechanical properties of steels during thermomechanical processing, NIST Technical Note 1393, Boulder, 1997.
  • [20] Kuziak R, Pidvysots’kyy V, Pernach M, Rauch Ł, Zygmunt T, Pietrzyk M. Strategy based on physical simulations for the selection of the best phase transformation model for optimization of manufacturing processes of pearlitic steel rails. Arch Civ Mech Eng. 2019;19:535–46.
  • [21] Kobayashi S, Oh SI, Altan T. Metal forming and the finite element method. New York: Oxford University Press; 1989.
  • [22] Pietrzyk M. Finite element simulation of large plastic deformation. J Mater Process Technol. 2000;106:223–9.
  • [23] Sellars CM. Physical metallurgy of hot working. In: Sellars CM, Davies GJ, editors. Hot working and forming processes. London: The Metals Society; 1979. p. 3–15.
  • [24] Pietrzyk M, Kuziak R. Modelling phase transformations in steel. In: Lin J, Balint D, Pietrzyk M, editors. Microstructure evolution in metal forming processes. Oxford: Woodhead Publishing; 2012. p. 145–179.
  • [25] Pietrzyk M, Madej Ł, Rauch Ł, Szeliga D. Computational materials engineering: achieving high accuracy and efficiency in metals processing simulations. Amsterdam: Elsevier; 2015.
  • [26] Bhadeshia HKDH. Bainite in steels. 2nd ed. London: IOM Communications; 2002.
  • [27] Katsamas AI, Haidemenopoulos GN. A semi–empirical model for the evolution of retained austenite via bainitic transformation in multiphase TRIP steels. Steel Res Int. 2008;79:875–84.
  • [28] Pietrzyk M., Kania Z., Kuziak R., Rauch Ł., Kusiak J., A simple model for prediction of retained austenite in steel rods after hot rolling and controlled cooling.In: Buchmayr B., Zauchensee, editors. Proceedings of XXXV Verformungskundliches Kolloquium. 2016; 56–66.
  • [29] Zajac S, Komenda J, Morris P, Matera S, Penalba DF. Quantitative structure-property relationships for complex bainitic microstructure, RFCS Final Report, European Commission, Luxembourg, 2003.
  • [30] Halfa H. Recent trends in producing ultrafine grained steels. J Miner Mater Character Eng. 2014;2:428–69.
  • [31] Morrison W. The effect of grain size on the stress-strain relationship in low carbon Steel. Trans Am Soc Metals. 1996;59:824–46.
  • [32] Brozzo P, Buzzichelli A, Mascanzoni A, Mirabile G. Microstructure and cleavage resistance of low carbon bainitic steel. Metal Sci. 1977;11:123–30.
  • [33] Bhadeshia H. Steels. Microstructure and properties, 3rd ed., Elsevier, Butterworth-Heinemann, Amsterdam, 2006.
  • [34] Takahashi M, Bhadeshia H. Model for transition from upper to lower bainite. Mater Sci Technol. 1990;6:592–603.
  • [35] Szeliga D, Gawąd J, Pietrzyk M. Inverse analysis for identification of rheological and friction models in metal forming. Comput Methods Appl Mech Eng. 2006;195:6778–98.
  • [36] Lenard JG, Pietrzyk M, Cser L. Mathematical and physical simulation of the properties of hot rolled products. Amsterdam: Elsevier; 1999.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-518d9646-8b8a-49af-a6ba-eda6455b03a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.