PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Software with a Graphical User Interface for GAMOS: Basic Training and an Educational Tool for Medical Physicists

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: It is necessary to have special experience to perform the Monte Carlo calculation, commonly used in medical physics and accepted as the gold standard. In this study, we developed software to teach basic steps to medical physicists who were inexperienced in the medical linear accelerator Monte Carlo simulation. Material and methods: For the design interface, a software called GamosLinacGUI was developed using Gnome Builder, Python, and GTK. The user, who wants to learn the basics of GAMOS and simulate a linear accelerator, can enter the values in the software, select some options and quickly create geometry and physics files. Results: For proof that the software generates the correct inputs for GAMOS simulation in the same conditions for the measurements and calculations. Required files for GAMOS have been created and tested and run the simulation accordingly. This software was tested with Centos Linux. Conclusions: GamosLinacGUI has been successfully developed, which creates the geometry and physics files required for the simulation with GAMOS as a training and learning tool.
Rocznik
Strony
42--49
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, Turkey
  • Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, Turkey
  • Department of Physics, Faculty of Science, Dokuz Eylül University, Turkey
Bibliografia
  • 1. Baskar R, Lee KA, Yeo R, Yeoh K. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199. https://doi.org/10.7150/ijms.3635
  • 2. Hussain A, Muhammad W. Treatment Planning in Radiation Therapy. In: Maqbool M., eds. An Introduction to Medical Physics. Germany: Springer, Inc; 2017:63-129. https://doi.org/10.1007/978-3-319-61540-0
  • 3. Oelfke U, Scholz C. Dose Calculation Algorithms. In: Schlegel W., Bortfeld T., Grosu AL., eds. New Technologies in Radiation Oncology. Berlin: Springer, Inc; 2006:187-196. https://doi.org/10.1007/3-540-29999-8_15
  • 4. Andreo P. Monte Carlo techniques in medical radiation physics. Phys Med Biol. 1991;36(7):861-920. https://doi.org/10.1088/0031-9155/36/7/001
  • 5. Konefał A, Bakoniak M, Orlef A, Maniakowski Z, Szewczuk M. Energy Spectra in water for the 6 MV X-ray therapeutic beam generated by CLINAC-2300 LINAC. Radiation Measurements. 2015;72:12-22. https://doi.org/10.1016/j.radmeas.2014.11.008
  • 6. Adam DP, Liu T, Caracappa PF, Bednarz BP, Xu XG. New capabilities of the Monte Carlo dose engine ARCHER‐RT: Clinical validation of the Varian TrueBeam machine for VMAT external beam radiotherapy. Medical Physics. 2020;47(6):2537-2549. https://doi.org/10.1002/mp.14143
  • 7. High Energy Accelerator Research Organisation. Electron Gamma Shower (EGS) Web Page http://rcwww.kek.jp/research/egs/. Accessed December 16, 2019.
  • 8. Los Alamos National Laboratory. A General Monte Carlo N-Particle (MCNP) Transport Code. https://mcnp.lanl.gov/. Accessed December 16, 2019.
  • 9. Nuclear Energy Agency. PENELOPE2014, A Code System for Monte-Carlo Simulation of Electron and Photon Transport. https://www.oecd-nea.org/tools/abstract/detail/nea-1525. Accessed December 16, 2019.
  • 10. Agostinelli S, Allison J, Amako K, et al. GEANT4--a simulation toolkit. Nucl Instrum Meth A. 2003;506(3):250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  • 11. Arce P, Lagares JI, Harkness L, et al. Gamos: A framework to do Geant4 simulations in different physics fields with an user-friendly interface. Nucl Instrum Meth A. 2014;735:304-313. https://doi.org/10.1016/j.nima.2013.09.036
  • 12. IAEA’s Phase Space Website. https://www-nds.iaea.org/phsp/phsp.htmlx. Accessed November 15,2019.
  • 13. Python High Level Programming Language. https://www.python.org. Accessed November 15, 2019.
  • 14. The GTK Project. https://www.gtk.org. Accessed November 15, 2019.
  • 15. Builder. https://wiki.gnome.org/Apps/Builder. Accessed November 15, 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-518a782e-df89-4da2-bf0b-ad4c40df4f06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.