PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Bacterial Microbiota on the Organic Matter Content of Shrimp Pond Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shrimp activity is associated with the impact of bacterial communities. Therefore, this research aimed to evaluate the influence of the bacterial microbiota on the organic matter content of the soil of the shrimp lagoon in La Segua-Ecuador. Starting from a descriptive approach, the field research method and documentary review were used. In total, 25 soil samples were collected in 5 quadrants of 100 m2. The bacterial DNA was extracted by using the Powersoil® kit and the identification of the strains was carried out with the 16SrDNA gene. The organic matter content was determined by Walkley-Black titration. The genus Bacillus was predominant in the bacterial strains; moreover, individuals of the genera Exiguobacterium, Acinetobacter, Prolinoborus, Arthrobacter Planococcus were identified with more than 99% homology for all cases. It was concluded that the organic matter content is suitable for shrimp farming.
Rocznik
Strony
21--28
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
  • Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, ESPAM - MFL, Calceta, Ecuador
Bibliografia
  • 1. Alfiansah, Y, Hassenrück, C., Kunzmann, A., Taslihan, A., Harder, J., Gärdes, A. 2018. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Frontiers in microbiology, 9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200860/
  • 2. Boyd, C. 2016. Decomposition and accumulation of organic matter in ponds. Global Seafood Alliance. https://www.globalseafood.org/advocate/decomposition-and-accumulation-of-organic-matter-in-ponds/
  • 3. Bravo, P. 2018. Bacterias asociadas a muestras de sedimentos y zooplancton en el Golfo de México. Tesis de Maestría, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. https://cicese.repositorioinstitucional. mx/jspui/bitstream/1007/2517/1/tesis_Bravo%20Ba%C3%A1s_%20Pablo_15_oct_2018.pdf
  • 4. Castelblanco, E., Martín, J., Morales, S., Rodríguez, J. 2020. Aislamiento e identificación de microorganismos potencialmente amilolíticos y celulolíticos de suelos de humedales de Bogotá. Rev. Colomb. Biotecnol, 36(44). http://www.scielo.org.co/scielo.php?pid=S0123-34752020000100036&script=sci_abstract&tlng=es
  • 5. Chen, J., Su, Z., Dai, T., Huang, B., Mu, Q., Zhang, Y., Wen, D. 2019. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea bays. Journal of Environmental Sciences, 156–167. https://www.sciencedirect.com/science/article/abs/pii/S100107421832895X
  • 6. Cheng, C., Chen, J., Ou, D., Tan, N., Chen, S., Zhang, Q., Chen, B., Ye, Y. 2020. Increased nitrous oxide emissions from intertidal soil receiving wastewater from dredging shrimp pond sediments. Environmental Research Letters, 15(9). https://iopscience.iop.org/article/10.1088/1748-9326/ab93fb
  • 7. Coller, E., Cestaro, A., Zanzotti, Bertoldi, D., Pindo, M., Larger, S., Albanese, D., Mescalchin, E., Donati, C. 2019. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7. https://microbiomejournal.biomedcentral. com/articles/10.1186/s40168-019-0758-7#citeas
  • 8. De Lacerda, L., Ward, R., Pinto, M., y De Andrade, A., Borges, R., Ferreira, A. (2021). 20-Years Cumulative Impact From Shrimp Farming on Mangroves of Northeast Brazil. Frontiers in Forests and Global Change, 4. https://www.frontiersin.org/articles/10.3389/ffgc.2021.653096/full
  • 9. Jory, D. 2018. Current production, challenges and the future of shrimp farming. Global Seafood Alliance. Guatemala. https://www.globalseafood.org/advocate/current-production-challenges-and-the-future-of-shrimp-farming/
  • 10. Kageyama, A., Morisaki, K., Mura, S., Takahashi, Y. 2008. Arthrobacter oryzae sp. nov. and Arthrobacter humicola sp. nov. International Journal of Systematic and Evolutionary Microbiology (58), 53–56. https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.64875-0
  • 11. Piedrahita, Y. 2018. Shrimp farming industry in Ecuador, part 1. Global Seafood Alliance. https://www.globalseafood.org/advocate/shrimp-farming-industry-in-ecuador-part-1/
  • 12. Rivera, M., Doumet, N. 2021. Dinámicas socioambientales y potencialidades turístico-recreativas del humedal de La Segua (Ecuador): actitudes y percepciones de los agentes locales y visitantes. Revista Tecnología y Ciencias del Agua 12(2), 272–326. http://revistatyca.org.mx/index.php/tyca/article/view/2583/2301
  • 13. Salazar, A. 2019. Detección de especies patogénicas del género vibrio en langostino blanco (Litopenaeus vannamei) de centros de crianza de la región Tumbes, mediante la aplicación de un protocolo de PCR múltiple. Tesis de Maestría, Universidad Peruana Cayetano Heredia, Perú. http://repositorio.upch.edu.pe/handle/upch/7028
  • 14. Shahriar, A., Dhrubo, B., Sazzad, H. 2019. Environmental Impacts of Commercial Shrimp Farming in Coastal Zone of Bangladesh and Approaches for Sustainable Management. International Journal of Environmental Sciences & Natural Resources, 20(3). https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.556038.php
  • 15. Souto, L., Blanco, F., Watterson, A., Ferretto, A. 2021. Aquaculture’s role in Latin America and Caribbean and updated data production. Aquaculture Research. DOI: 10.1111/are.15247
  • 16. Terkula, B., Kasana, A. 2021. Recent advances in Shrimp aquaculture wastewater management. Heliyon, 7(11). https://www.sciencedirect.com/science/article/pii/S2405844021023860
  • 17. Torun, F., Hostins, B., Teske, J., De Schryver, P., Boon, N., De Vrieze, J. 2020. Nitrate amendment to control sulphide accumulation in shrimp ponds. Aquaculture, 521, 735010. DOI: 10.1016/j.aquaculture.2020.73
  • 18. Vivien, R., Apothéloz, L., Pawlowski, J., Werner, I., Ferrari, B. 2019. Testing different (e) DNA metabarcoding approaches to asses aquatic oligochaete diversity and the biological quality of sediments. Ecological Indicators, 1(2041). https://www.nature.com/articles/s41598-020-58703-2
  • 19. Zeng, S., Khoruamkid, S., Kongpakdee, W. Wei, D., Yu, L., Wang, H., Deng, Z., Weng, S. Huang, Z., He, J., Satapornvanit, K. 2020. Dissimilarity of microbial diversity of pond water, shrimp intestine and sediment in Aquamimicry system. AMB Expr, 10. https://amb-express.springeropen.com/articles/10.1186/s13568-020-01119-y#citeas
  • 20. Zhao, Z., Jiang, J., Pan, Y., Dong, Y., Chen, Z., Zhang, G., Gao, S., Sun, H., Guan, X., Wang, B., Xiao, Y., Zhou, Z. 2020. Temporal dynamics of bacterial communities in the water and sediments of sea cucumber (Apostichopus japonicus) culture ponds. Aquaculture, 528. https://www.sciencedirect.com/science/article/abs/pii/S0044848620307924?dgcid=rss_sd_all
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-516fb0f7-eee4-447e-83d5-fbc9a3f07feb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.