Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the process optimization of some key parameters, such as the size of the air gap and distance between fixed neodymium magnets to enhance the vibration-based energy harvesting effect in the tri-stable energy harvesting systems and the improved tri-stable energy harvesting system being the proposed solution under weak excitation. In order to do it, firstly the distributed parameters model of the magnetic coupling energy harvesting system, including macro fiber composites of the 8514 P2 with a homogenous material in the piezoelectric fiber layer and nonlinear magnetic force, was determined. The performed numerical analy-sis of the conventional and the improved tri-stable energy harvesting system indicated that introducing an additional magnet to the tri-stable system leads to the shallowing of the depth of a potential well by decreasing the air gap between magnets and consequently generating higher power output and improving the effectiveness of the proposed improved tri-stable energy harvesting system. Experiments carried out on the laboratory stand allowed us to verify the numerical results as well as determine the optimal param-eters of the magnetic coupling system. Due to it, the effectiveness of the proposed system versus the conventional tri-stable energy har-vesting system is most enhanced.
Czasopismo
Rocznik
Tom
Strony
126--138
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C Street, 15-351 Białystok, Poland
autor
- Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38 Street, 20-618 Lublin, Poland
Bibliografia
- 1. Bradai S, Naifar S, Viehweger C, Kanoun O, Litak G. Nonlinear analysis of electrodynamics broadband energy harvester. European Physical Journal. Special Topics. 2015; 224: 2919-2927.
- 2. Chen Y, Yan Z. Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity, International Journal of Me-chanical Science. 2020;173:105473.
- 3. Koszewnik A, Lesniewski K, Pakrashi V. Numerical Analysis and Experimental Verification of Damage Identification Metrics for Smart Beam with MFC elements to support structural health monitoring. Sensors. 2021; 21(20): 6796.
- 4. Ambroziak L, Ołdziej D, Koszewnik A. Multirotor Motor Failure Detec-tion with Piezo Sensor. Sensors. 2023; 23(2):1048.
- 5. Yang F, Gao M, Wang P, Zuo J, Dai J, Cong J. Efficient piezoelectric harvester for random broadband vibration of rail. Energy 2021; 218: 119559
- 6. Koszewnik A. Analytical Modeling and Experimental Validation of an Energy Harvesting System for the Smart Plate with an Integrated Pi-ezo-Harvester. Sensors. 2019; 19(4): 812
- 7. Cahill P, Hazra B, Karoumi R, Mathewson A, Pakrashi V. Vibration energy harvesting based monitoring of an operational bridge under-going forced vibration and train passage. Mechanical Systems and Signal Processing 2018; 106: 265–283.
- 8. Koszewnik A, Oldziej D. Amaro M., Parameter of a Magnetic Cou-pled Piezoelectric Energy Harvester with the homogenized Material – numerical approach and experimental study. Sensors. 2022; 22: 4073.
- 9. Cottone F, Vocca H, Gammaitoni L. Nonlinear. Energy harvesting. Physical Review Letters. 2009; 102.8:080601.
- 10. Stanton SC, McGehee CC, Mann BP. Reversible hysteresis for broadband magnetopiezoelectric energy harvesting. Applied Physical Letters. 2009;95:174103.
- 11. Ferrari M, Ferrari V, Guizzeti M, Trigona C. Improved energy harvest-ing from wideband vibrations by nonlinear piezoelectric converters. Sensors and Actuators A Physics. 2010; 162: 425-431.
- 12. Tang L, Yang Y. A nonlinear piezoelectric energy harvester with magnetic oscillator, Applied Physical Letters. 2012; 101: 94102.
- 13. Margielewicz J, Gąska D, Caban J, Litak G, Dudziak A, Ma X, Zhou S. Double-versus triple-potential well energy harvesters: dynamics and power output. Sensors 2023; 23(4): 2185.
- 14. Zhou S, Cao J, Inman J, Lin D. Harmonic balance analysis of nonlin-ear tri-stable energy harvesters for performance enhancement. Jour-nal sound and Vibrations. 2016; 373: 223-235.
- 15. Zhou J, Cao D, Inman J, Lin J, Liu S, Wang Z. Broadband tristable energy harvester: modeling and experimental verification. Applied Energies. 2014; 133: 33-39.
- 16. Cao J, Zhou S, Wang W, Lin J. Influence of potential well depth on nonlinear tristable energy harvesting. Applied Physical Letters. 2015; 106: 173903.
- 17. Kim P, Seok J. Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester, Mechanical Machinery Theo-ry. 2015; 94: 41-63.
- 18. Kim P, Son D, Seok J. Triple-well potential with a uniform depth: advantageous aspects in designing a multi-stable energy harvester. Applied Physcial Letters. 2016;108(24):243902
- 19. Kwuimy C, Woafo P, Tekam G. Analysis of tri-stable energy harvest-ing system having fractional order viscoelastic material. Chaos. 2015;25(1):013112.
- 20. Li H, Qin W, Lan C, Deng W, Zhou Z. Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Material Structures. 2016;25(1):015001.
- 21. Cao Y, Yang J, Yang D. Coupling nonlinearities investigation and dynamic modeling of a tristable combined beam rotational energy harvesting system. Mechanical Systems and Signal Processing. 2023; 200: 110503.
- 22. Leng Y, Tan D, Liu J, Zhang Y, Fan S. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under ran-dom excitations. Journal Sound and Vibrations. 2017;406:146-60.
- 23. Tan D, Leng YG, Gao YJ. Magnetic force of piezoelectric cantilever energy harvesters with an external magnetic field, European Physical Journal Special Topics. 2015; 224: 2839-2853.
- 24. Deraemaeker A, Benelechi S, Benjeddou A, Preumont A. Analytical and numerical computation of homogenized properties of MFCs: Application to a composite boom with MFC actuators and sensors. Proceedings of the III ECCOMAS thematic conference on Smart Structures and Materials. Gdansk Poland. 9–11 July 2007.
- 25. Deraemaeker A, Nasser H, Benjeddou A, Preumont A. Mixing Rules for the Piezoelectric Properties of Macro Fiber Composites. J. Intell. Mater. Syst. Struct. 2009; 20: 1475–1482.
- 26. Ksica F, Behal J, Rubes O, Hadas Z. Homogenized Model of Piezoe-lectric Composite Structures for Sensing Purposes. Proceedings of International Conference Mechatronics 2019: Recent Advances To-wards Industry 4.0. 2019; 358-365.
- 27. Hu K, Li H. Large deformation mechanical modeling with bilinear stiffness for Macro-Fiber Composite bimorph based on extending mixing rules. Journal of Intelligent Material Systems and Structures. 2020; 1-13.
- 28. Biscani F, Nasser H, Belouettar S, Carrera E. Equivalent electro-elastic properties of Macro Fiber Composite (MFC) transducers using asymptotic expansion approach, Composites. Part B. 2011; 444-455.
- 29. Koszewnik A. Frequency domain identification of the active 3D mechanical structure for the vibration control system, Journal of Vi-broengineering. 2012; 14(2): 451-457.
- 30. Kletsel M, Barukin A, Amirbek D. Reed Switch and Magneto Resis-tor-Based Differential Protection Featuring Test Diagnostics for Con-verters. 2020 International Multi-Conference on Industrial Engineer-ing and Modern Technologies. Russia. 2020; 1-6.
- 31. Fan K, Tan Q, Liu H, Zhang Y, Cal M. Improved energy harvesting from low-frequency small vibrations through a monostable piezoelec-tric energy harvester. Mechanical Systems and Signal Processing. 2019; 117: 594-608.
- 32. Lallart M, Anton SR, Inman DJ. Frequency self-tuning scheme for broadband vibration energy harvesting, Journal of Intelligent Material Systems and Structures. 2010; 21(9): 897-906.
- 33. Caban J, Litak G, Ambrożkiewicz B, Gardyński L, Stączek P, Wol-szczak P. Impact-based piezoelectric energy harvesting system ex-cited from diesel engine suspension. Applied Computer Science 2020; 16(3): 16-29.
- 34. Erturk A, Hoffmann J, Inman DJ, A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters. 2009; 94(25): 254102.
- 35. Łępicka M, Górski G, Grądzka-Dahlke M, Litak G, Ambrożkiewicz B, Analysis of tribological behaviour of titanium nitride-coated stainless steel with the use of wavelet-based methods. Archive of Applied Me-chanics. 2021; 91(11): 4475-4483.
- 36. Wang C, Zhang J, Zhu HP. A combined method for time-varying parameter identification based on variational mode decomposition and generalized morse wavelet. International Journal of Structural Stability and Dynamics 2020; 20(7): 2050077.
- 37. Syta A, Czarnigowski J, Jakliński P. Detection of cylinder misfire in an aircraft engine using linear and non-linear signal analysis. Meas-urement: Journal of the International Measurement Confederation. 2021; 174: 108982.
- 38. Litak G, Syta A, Budhraja M, Saha LM. Detection of the chaotic behaviour of a bouncing ball by the 0-1 test. Chaos. Solutions and Fractals 2009; 42(3): 1511-1517.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-516c69ca-65ad-4298-8a17-450482f468b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.