PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technical and Economical Evaluation of Proton Exchange Merobrane (PEM) Fuel Cell for Commercial Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The green energy sources are the utmost needs of today’s world where the reserves of fossil fuel are depleting day by day. The Distributed Generation (DG) has become integral part of power system at commercial level. The most efficient among all DGs and Renewable Energy Sources (RES) is the Fuel Cell (FC) power generation. The fuel cell invariably converts chemical energy directly into electricity. The Fuel cells have normally 60 to 70% efficiency at working conditions. The polarization curve of fuel cell plays important role in improving its efficiency. This research presents the mathematical and Simulink modeling 6 kW, 45 Vdc of Proton Exchange Membrane (PEM) fuel cell. The input thermodynamic parameters of fuel cell are varied and their effects on the output electrical variable are observed. The DC/DC boost converter is used to step up the voltage of fuel cell to 100 Vdc at commercial usable level. A new mathematical equation is presented to improve the efficiency of fuel. The mathematical results are then varied through Simulink results.
Rocznik
Tom
Strony
41--49
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Electrical Engineering, Sukkur IBA University, Pakistan
autor
  • Department of Electrical Power Engineering, Wrocław University of Science and Technology, Poland
  • Department of Electrical Power Engineering, Wrocław University of Science and Technology, Poland
autor
  • Electrical Engineering, Sukkur IBA University, Pakistan
Bibliografia
  • [1] CORRÊA J.M., FARRET F.A., POPOV V.A., SIMÕES M.G., Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells, IEEE Transactions on Energy Conversion, 2005, 1(20), 211–218.
  • [2] OUTEIRO M.T., CHIBANTE R., CARVALHO A.S., DE ALMEIDA A.T., A new parameter extraction method for accurate modeling of PEM fuel cells, International Journal of Energy Research, 2008, 33(11), pp. 978–988.
  • [3] CHANGCHIEN S.K., LIANG T.J., CHEN J.F., YANG L.S., Novel high step-up DC–DC converter for fuel cell energy conversion system, IEE Trans. Ind. Electron., June 2010, Vol. 57, No. 6, pp. 2007–2017.
  • [4] HUANG X., ZHANG Z., JIANG J., Fuel cell technology for distributed generation: an overview, IEEE Symposium on Industrial Electron, 2006, pp. 1613–1618.
  • [5] CHOI T., LEE K.Y., Interface of a fuel cell distributed generator with distribution system network, [in:] Proc. of the IEEE Power Energy Society General Meeting, Calgary, Canada, July 26–30, 2009.
  • [6] WANG C., NEHRIR M., Dynamic models and model validation for PEM fuel cells using electrical circuits, IEEE Transactions on Energy Conversion, 2005, 2(20), p. 442–451.
  • [7] ZEHRA URAL, MUHSIN TUNAY GENCOGLU, BILAL GUMUS, Dynamic Simualation of a PEM Fuel Cell System, Proceedings 2nd International Hydrogen Energy Congress and Exhibition, IHEC 2007.
  • [8] SEYEZHAI R., MATHUR B.L., Mathematical Modeling of Proton Exchange Membrane Fuel Cell, International Journal of Computer Applications (0975–8887), April 2011, Vol. 20, No. 5.
  • [9] IBRAHIM M.M. SALEH R. ALI, ZHANG H., Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack, J. Mod. Power Syst. Clean Energy, 2016, 4(4), 668–679.
  • [10] QIU J., DONG Z.Y., ZHAO J.H. et al., A low-carbon oriented probabilistic approach for transmission expansion planning, Power Syst. Clean Energ., 2015, 3(1), 14–23, DOI: 10.1007/s40565-015-0105-3.
  • [11] CORRÊA J.M., FARRET F.A., CANHA L.N., An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, 27th Annual Conference on the IEEE Industrial Electronics Society, 2001.
  • [12] FORRAI H.F., YANAGITA Y., KATO Y., Fuel-cell parameter estimation and diagnostics, IEEE Transactions on Energy Conversion, 2005, 3(20), 668–675.
  • [13] CHOI W., ENJETI P.N., HOWZE J.W., Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current, IEEE Transactions on Energy Conversion, 2004, Vol. 45, pp. 456–465.
  • [14] MANISH KHEMARIYA, ARVIND MITTAL, Modeling and Simulation of different components of a standalone Photovoltaic and PEM Fuel Cell Hybrid System, International Journal on Emerging Technologies, 2010.
  • [15] EL-SHARKH M.Y., RAHMAN A., ALAM M.S., A dynamic model for a stand-alone PEM fuel cell power plant for residential applications, J. Power Sources, 2004, 138(1/2), 199–204.
  • [16] YUAN W., TANG Y., PAN M.Q., Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance, Renew. Energ., 2010, 35(3), 656–666.
  • [17] ROWE A., LI X.G., Mathematical modeling of proton exchange membrane fuel cells, J. Power Sources, 2011, 102(1/2), 82–96.
  • [18] SALEH I.M.M., CALAY R.K., ALI R., Modelling and examining open circuit voltage for PEM fuel cell, J. Electr. Eng., 2013, 13(3), 140–146.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-516c415f-8d73-40cf-9b9b-221e319bfcbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.