Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zautomatyzowana metoda aktualizacji map zmian pokrycia terenu na podstawie zobrazowań satelitarnych
Języki publikacji
Abstrakty
Land cover change is a critical aspect of global environmental dynamics, influencing ecosystems, biodiversity, and climate change. This study presents an automated approach for updating land cover maps across Europe, combining Sentinel-1 and Sentinel-2 satellite imagery within the Copernicus framework. The application utilises machine learning algorithms to categorise land cover changes into classes such as no change, retained/reclassified, deurbanisation, afforestation, and urbanisation. Case studies in Poland, Greece, and Italy demonstrate the application's effectiveness, revealing the impact of motorway construction, afforestation efforts, and rapid urbanisation. Overall accuracy rates ranged from 68% to 95%, emphasising the reliability of the methodology. The open-source application, implemented in Python Jupyter and Voila, provides a user-friendly platform for researchers and stakeholders to monitor and analyse land cover changes, supporting informed decision-making for sustainable land management and conservation efforts. This study contributes valuable insights to understanding and addressing the environmental consequences of land cover changes in diverse geographical contexts.
Zmiany w pokryciu terenu stanowią istotne zagadnienie w badaniach globalnych procesów środowiskowych, wpływając na ekosystemy, bioróżnorodność oraz zmiany klimatu. W niniejszej pracy przedstawiono zautomatyzowaną metodę aktualizacji map pokrycia terenu w Europie, wykorzystującą zobrazowania z misji satelitów Sentinel-1 oraz Sentinel-2 w ramach programu Copernicus. Algorytmy uczenia maszynowego posłużyły do klasyfikacji zmian pokrycia terenu w kategoriach takich jak brak zmiany, zachowane-przeklasyfikowane, dezurbanizacja, zalesianie oraz urbanizacja. Skuteczność rozwiązania została potwierdzona w studiach przypadków przeprowadzonych w Polsce, Grecji i Włoszech, gdzie zidentyfikowano wpływ budowy autostrad, działań zalesieniowych oraz intensywnej urbanizacji. Dokładność klasyfikacji wynosiła od 68% do 95%, co świadczy o wysokiej jakości zastosowanej metodyki. Aplikacja, opracowana w otwartym środowisku Python Jupyter i Voila, zapewnia intuicyjną platformę dla naukowców i decydentów, umożliwiającą monitorowanie oraz analizę zmian pokrycia terenu. Narzędzie to wspiera podejmowanie świadomych decyzji dotyczących zrównoważonego zarządzania gruntami i ochrony środowiska. Niniejsze badanie dostarcza cennych informacji na temat konsekwencji zmian pokrycia terenu w różnych kontekstach geograficznych, przyczyniając się do lepszego zrozumienia i skuteczniejszego zarządzania tymi procesami.
Czasopismo
Rocznik
Tom
Strony
art. no. 810
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Remote Sensing Centre, Institute of Geodesy and Cartography, Modzelewskiego Street 27, 02-679 Warsaw, Poland
autor
- Remote Sensing Centre, Institute of Geodesy and Cartography
- Remote Sensing Centre, Institute of Geodesy and Cartography
Bibliografia
- Aleksandrowicz, S., Turlej, K., Lewiński, S., & Bochenek, Z. (2014). Change detection algorithm for the production of land cover change maps over the European Union countries. Remote Sensing, 6(7), 5976-5994. https://doi.org/10.3390/rs6075976
- Balzter, H., Cole, B., Thiel, C., & Schmullius, C. (2015). Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sensing, 7(11), 14876-14898. https://doi.org/10.3390/rs71114876
- Bartold, M. (2012). Monitoring of forest damages in Poland and Slovakia based on Terra. MODIS satellite images. Geoinformation Issues, 4(1(4)), 23-31. https://doi.org/10.34867/gi.2012.3
- Bartold, M., & Kluczek, M. (2023). A machine learning approach for mapping chlorophyll fluorescence at inland wetlands. Remote Sensing, 15(9), 2392. https://doi.org/10.3390/rs15092392
- Bielecka, E., & Jenerowicz, A. (2019). Intellectual structure of CORINE land cover research applications in Web of Science: A Europe-wide review. Remote Sensing, 11(17), 2017. https://doi.org/10.3390/rs11172017
- Buettig, S., Lins, M., & Goihl, S. (2022). WaterMaskAnalyzer (WMA)—A user-friendly tool to analyze and visualize temporal dynamics of inland water body extents. Remote Sensing, 14(18), 4485. https://doi.org/10.3390/rs14184485
- Chaves, E. D. M., Picoli, C. A. M., & Sanches, D. (2020). Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sensing, 12(18), 3062. https://doi.org/10.3390/rs12183062
- Chughtai, H. A., & Karas, I. R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22, 100482. https://doi.org/10.1016/j.rsase.2021.100482
- Close, O., Benjamin, B., Petit, S., Fripiat, X., & Hallot, E. (2018). Use of Sentinel-2 and LUCAS database for the inventory of land use, land use change, and forestry in Wallonia, Belgium. Land, 7(4), 154. https://doi.org/10.3390/land7040154
- Dabija, A., Kluczek, M., Zagajewski, B., Raczko, E., Kycko, M., Al-Sulttani, A. H., Tardà, A., Pineda, L., & Corbera, J. (2021). Comparison of support vector machines and random forests for CORINE land cover mapping. Remote Sensing, 13(4), 777. https://doi.org/10.3390/rs13040777
- Dawid, W., & Bielecka, E. (2022). GIS-based land cover analysis and prediction based on open-source software and data. Quaestiones Geographicae, 41(3), 75-86. https://doi.org/10.2478/quageo-2022-0026
- Dąbrowska-Zielinska, K., Bartold, M., & Gurdak, R. (2016). POLWET – System for new space-based products for wetlands under RAMSAR Convention. Geoinformation Issues, 8(1(8)), 25-35. https://doi.org/10.34867/gi.2016.3
- De Fioravante, P., Luti, T., Cavalli, A., Giuliani, C., Dichicco, P., Marchetti, M., Chirici, G., Congedo, L., & Munafò, M. (2021). Multispectral Sentinel-2 and SAR Sentinel-1 integration for automatic land cover classification. Land, 10(6), 611. https://doi.org/10.3390/land10060611
- Demirkan, D., Koz, A., & Duzgun, S. (2020). Hierarchical classification of Sentinel-2A images for land use and land cover mapping and its use for the CORINE system. Journal of Applied Remote Sensing, 14(2), 1-21. https://doi.org/10.1117/1.JRS.14.026524
- Du, L., Dong, C., Kang, X., Qian, X., & Gu, L. (2023). Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020. Journal of Environmental Management, 332, 117149. https://doi.org/10.1016/j.jenvman.2022.117149
- European Commission. (2018). Analysis of LULUCF actions in EU Member States as reported under Art. 10 of the LULUCF Decision – Final report. https://data.europa.eu/doi/10.2834/571578
- FPCUP Climate. (2022). FPCUP - Development of Downstream Applications Supporting Sectoral Information System under Copernicus Climate Change Service [Application]. GitHub. https://github.com/Remote-Sensing-Centre/FPCUP-Climate
- Ghamisi, P., Rasti, B., Yokoya, N., Wang, Q., Höfle, B., Bruzzone, L., Bovolo, F., Chi, M., Anders, K., Gloaguen, R., Atkinson, P. M., & Benediktsson, J. A. (2019). Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 7(1), 6-39. https://doi.org/10.1109/MGRS.2018.2890023
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
- Gómez, C., White, J. C., & Wulder, M. C. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55-72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
- Gudmann, A., Csikós, N., Szilassi, P., & Mucsi, L. (2020). Improvement in satellite image-based land cover classification with landscape metrics. Remote Sensing, 12(21), 3580. https://doi.org/10.3390/rs12213580
- Häme, T., Sirro, L., Kilpi, J., Seitsonen, L., Andersson, K., & Melkas, T. (2020). A hierarchical clustering method for land cover change detection and identification. Remote Sensing, 12(11), 1751. https://doi.org/10.3390/rs12111751
- Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel-2 and deep learning. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499
- Koala, H., Georgakopoulos, D., Jayaraman, P. P., & Yavari, A. (2021). Managing time-sensitive IoT applications via dynamic application task distribution and adaptation. Remote Sensing, 13(20), 4148. https://doi.org/10.3390/rs13204148
- Leinenkugel, P., Deck, R., Huth, J., Ottinger, M., & Mack, B. (2019). The potential of open geodata for automated large-scale land use and land cover classification. Remote Sensing, 11(19), 2249. https://doi.org/10.3390/rs11192249
- Lu, Y., Wu, P., Ma, X., & Li, X. (2019). Detection and prediction of land use/land cover change using spatiotemporal data fusion and the Cellular Automata–Markov model. Environmental Monitoring and Assessment, 191, 68. https://doi.org/10.1007/s10661-019-7200-2
- Malinowski, R., Lewiński, S., Rybicki, M., Gromny, E., Jenerowicz, M., Krupiński, M., Nowakowski, A., Wojtkowski, C., Krupiński, M., Krätzschmar, E., & Schauer, P. (2020). Automated production of a land cover/use map of Europe based on Sentinel-2 imagery. Remote Sensing, 12(21), 3523. https://doi.org/10.3390/rs12213523
- Mikula, K., Šibíková, M., Ambroz, M., Kollár, M., Ožvat, A. A., Urbán, J., Jarolímek, I., & Šibík, J. (2021). NaturaSat—A software tool for identification, monitoring and evaluation of habitats by remote sensing techniques. Remote Sensing, 13(17), 3381. https://doi.org/10.3390/rs13173381
- Mishra, P. K., Rai, A., & Rai, S. Ch. (2020). Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 133-143. https://doi.org/10.1016/j.ejrs.2019.02.001
- Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. Remote Sensing, 12(14), 2291. https://doi.org/10.3390/rs12142291
- Stehman, S. V., & Foody, G. M. (2019). Key issues in rigorous accuracy assessment of land cover products. Remote Sensing of Environment, 231, 111199. https://doi.org/10.1016/j.rse.2019.05.018
- Thinh, T. V., Duong, P., Kenlo, N., & Takeo, T. (2019). How does land use/land cover map’s accuracy depend on number of classification classes? SOLA, 15, 28-31. https://doi.org/10.2151/sola.2019-006
- Topaloglu, R., Sertel, E., & Musaoglu, N. (2016). Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 1055-1059. https://doi.org/10.5194/isprs-archives-XLI-B8-1055-2016
- Tsou, M. H., Guo, L., & Stow, D. (2003). Web-based remote sensing applications and Java tools for environmental monitoring. Online Journal of Space Communication, 2(3), 20. https://ohioopen.library.ohio.edu/spacejournal/vol2/iss3/20
- Ullo, S. L., & Sinha, G. R. (2021). Advances in IoT and smart sensors for remote sensing and agriculture applications. Remote Sensing, 13(13), 2585. https://doi.org/10.3390/rs13132585
- Verhoeven, V. B., & Dedoussi, I. C. (2022). Annual satellite-based NDVI-derived land cover of Europe for 2001–2019. Journal of Environmental Management, 302(Part A), 113917. https://doi.org/10.1016/j.jenvman.2021.113917
- Viana, C. M., Oliveira, S., Oliveira, S. C., & Rocha, J. (2019). Land use/land cover change detection and urban sprawl analysis. In H.R. Pourghasemi & C. Gokceoglu (Eds.), Spatial modeling in GIS and R for Earth and environmental sciences (pp. 621-651). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-815226-3.00029-6
- Wang, Q., Guan, Q., Sun, Y., Du, Q., Xiao, X., Luo, H., Zhang, J., & Mi, J. (2023). Simulation of future land use/cover change (LUCC) in typical watersheds of arid regions under multiple scenarios. Journal of Environmental Management, 335, 117543. https://doi.org/10.1016/j.jenvman.2023.117543
- Weinmann, M., & Weidner, U. (2018). Land-cover and land-use classification based on multitemporal Sentinel-2 data. Proceedings of the International Geoscience and Remote Sensing Symposium, Valencia, Spain, 4946-4949. https://doi.org/10.1109/IGARSS.2018.8519301
- Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N. E., Xu, P., Ramoino, F., & Arino, O. (2022). ESA WorldCover 10 m 2021 v200 [Data set]. https://doi.org/10.5281/zenodo.7254221
- Zeferino, B. L., Tavares de Souza, L. F., Hummel do Amaral, C., Filho, E. I. F., & Senna de Oliveira, T. (2020). Does environmental data increase the accuracy of land use and land cover classification? International Journal of Applied Earth Observation and Geoinformation, 91, 102128. https://doi.org/10.1016/j.jag.2020.102128
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-516ab014-a710-441a-9774-7cd5f1a5e7fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.