str. 112

Karol PEPLIŃSKI

e-mail: karolpep@utp.edu.pl

Zakład Inżynierii Materiałowej i Przetwórstwa Tworzyw, Wydział Inżynierii Mechanicznej, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz

Zastosowanie programu Ansys-Polyflow do wspomagania wytwarzania butelek z uchwytem metodą wytłaczania z rozdmuchiwaniem

Wstęp

Wytłaczanie z rozdmuchiwaniem w formie EBM (*Extrusion Blow Molding*) jest jednym z głównych procesów technologicznych wykorzystywanych przy produkcji butelek polimerowych. Obok niego znaczenie posiada wtryskiwanie z rozdmuchiwaniem IBM (*Injection Blow Molding*) i wtryskiwanie z rozdmuchiwaniem przy współudziale rozciągania mechanicznego ISBM (*Injection Streatch Blow Molding*) [*Pepliński*, 2017]. Proces EBM zajmuje największy udział wśród trzech tych technologii, a jego ilościowy wzrost szacuje się rok rocznie na poziomie 3÷5% [*Blow Molded Plastics Market Analysis*, 2018].

W rozważanym procesie EBM materiał wejściowy ma postać wytłaczanego węża tworzywa (wytłoczyna). Wąż tworzywa o określonym przekroju poprzecznym i długości jest umieszczany w formie rozdmuchowej, zgrzewany w strefie zgniotu i odcinany, a potem kolejno rozdmuchiwany sprężonym powietrzem. Rozdmuchiwanie trwa do momentu zetknięcia się tworzywa ze ściankami gniazda formującego. Rozdmuchany wytwór opuszcza formę po uprzednim ochłodzeniu w gnieździe formującym [*Pepliński i Bieliński, 2009; Kutz, 2011; Pepliński, 2017*].

Europejskie dane dotyczące przetwórstwa tworzyw (49,9 mln ton) [*PlasticsEurope, 2018*] wskazują, iż produkcja opakowań stanowiła ok. 39,9%, gdzie ponad 6% przypadło na technologie EBM. W ujęciu światowym technologiami rozdmuchowymi w roku 2016 przetworzono 68 mln ton tworzyw [*Blow Molded Plastics Market Analysis, 2018*]. W obszarze produkcji opakowań technologia EBM jest jedyną, która umożliwia formowanie butelek z uchwytem wewnątrz pustym [*Rosato, 2004*].

Jedną z podstawowych możliwości formowania rozdmuchowego jest kształtowanie opakowań o wybranych cechach geometrycznych rozkładu grubości ścianki poprzez zastosowanie określonej średnicy wytłoczyny i jej zróżnicowanego rozkładu grubości. Głównymi technikami związanymi ze sposobem sterowania grubością wytłoczonego węża są: osiowy system rozkładu wytłaczanego węża tworzywa VWDS (Vertical Wall Distribution System) i statyczny system rozkładu grubości wytłaczanego węża tworzywa SFRD (Static Flexible Deformable Ring) [Rosato, 2004]. Uwzględnienie tych technik, analiza danych stanów jak i ich ewaluacja może być wykonywana za pośrednictwem inżynierskich narzędzi CAE, takich jak oprogramowanie ANSYS-Polyflow [ANSYS, 2012]. Istotną kwestią podczas produkcji opakowań rozdmuchiwanych jest uzyskanie jak najbardziej równomiernego (lub zamierzonego) rozkładu grubości ścianki wytworu oraz minimalnego jednostkowego zużycia tworzywa na produkcję opakowania. W literaturze naukowej można dostrzec obszary, w których wykorzystanie metod numerycznych spowodowało uzyskanie wytworów o podwyższonej jakości [Biglione, 2016]. Z tych powodów uzasadnione było podjęcie próby numerycznego modelowania procesu formowania rozdmuchowego butelek PEHD z uchwytem w programie ANSYS-Polyflow [ANSYS, 2012] w celu uzyskania takiego rozkładu grubości wytłoczyny, która zapewni bardziej jednorodny rozkład grubości ścianki opakowania i zminimalizuje jego masę. Takie podejście pozwala na redukowanie zużycia surowców oraz minimalizowanie szkodliwości oddziaływania na środowisko naturalne [Pepliński, 2018]. Modelowanie procesu EBM umożliwia powstanie ulepszonych konstrukcji wytłoczyn, a tym samym zamierzonych postaci opakowań rozdmuchiwanych.

Modelowanie procesu

Modele geometryczne i dyskretyzacja. Do badań numerycznych przyjęto opakowanie typu butelka z uchwytem, którego model pokazano na rys. 1, a dane charakterystyczne tworzywa polietylenu wysokiej gęstości

Rys. 1. Rozpatrywany model (wymiary w mm): a) dwóch połówek gniazd formy (opakowania) wraz z umiejscowionym wężem tworzywa o średnicy Ø90, b) model wykorzystany w symulacji

(BS 2541), z którego jest wykonana zawarto w tab. 1. Na podstawie przyjętego modelu geometrycznego opakowania, wykonano model geometryczny wytłoczonego węża i gniazda formy, które następnie poddano procesowi dyskretyzacji MES w module *ANSYS Meshing*. W module *Polydata* wyodrębniono dwa podobszary: wąż (podobszar 1) oraz gniazdo formy (podobszar 2).

Warunki brzegowe obejmowały:

a) powierzchnię swobodną – określaną jako obszar modelu powłokowego dla wytłoczyny, z atrybutem grubości,

b) powierzchnię kontaktu pomiędzy wytłoczyną a gniazdem formy,

c) granicę symetrii wytworów – warunek ustala się na podstawie analizy przepływu względem tej granicy.

Kolejnym etapem było zdefiniowanie warunków początkowych i brzegowych dla poszczególnych objętości wytłoczyny i gniazda formy (symetria wytworów).

Właściwości tworzywa określono w dalszej części modelowania oraz zdefiniowano wybrane parametry podczas formowania rozdmu-chowego (Tab. 1).

Metodyka. Określono również czynniki wyjściowe symulacji jako: rozkład grubości ścianki wytłoczonego węża tworzywa (metodą SFDR) oraz procentowy finalny rozkład grubości ścianki opakowania dla dwóch przyjętych średnic węża (d_1 , d_2) i uwzględnieniem kryteriów grubości ścianki opakowania: mniejszy, równy lub większy od 0,0001 m

Tab. 1. Dane charakterystyczne tworzywa PEHD (BS 2541) i założenia wykorzystane podczas symulacji

Parametr	Jednostka	Wartość, cecha
Gęstość tworzywa (w temp. 190 °C)	kg/m³	960
Współczynnik przewodzenia ciepła tworzywa	$W/(m \cdot K)$	0,48
Pojemność cieplna tworzywa	J/(kg/K)	2050
Lepkość pozorna tworzywa (w temp. 190 °C)	Pa⋅s	6622
Grubość wejściowa wytłoczyny	m	0,0002
Ciśnienie rozdmuchiwania wytłoczyny	MPa	3
Wstępna temperatura wytłoczyny	°C	180÷190
Kierunek optymalizacji wytłoczyny	-	SFRD (obwodowy)
Temperatura formy	°C	10
Pożądany rozkład grubości ścianki opakowania	m	≥ 0,0001
Czas trwania rozdmuchiwania wytłoczyny	s	2
Początkowe średnice wytłoczyny: d1; d2	m	0,006; 0,009

(kryterium nr 1). Kolejnym istotnym czynnikiem wyjściowym było uzyskanie jak najmniejszej masy opakowania (kryterium nr 2). W module *Polyflow* zrealizowano obliczenia, których rezultatem było wygenerowanie plików tekstowych i graficznych niezbędnych do zobrazowania wyników badań.

Modelowanie procesu odbywało się w kilku etapach, w których informacja o rozkładzie grubości ścianki opakowania rozdmuchanego z wytłoczyny, o określonej grubości i danej średnicy, była wejściową do realizacji modyfikacji pola rozkładu grubości wytłoczyny z uwzględnioną przyjętą metodą optymalizacji (techniką) SFRD.

Wyniki symulacji i dyskusja

Przyjęcie założenia o jednakowej początkowej grubości ścianki wytłoczyny g = 0,0002 m (dla średnicy d_1 i d_2) w obszarze rozdmuchiwania ograniczonym powierzchnią gniazda formującego spowodowało znaczące zróżnicowanie rozkładu grubości butelki z uchwytem, a największe pocienienia materiału (średnio ok. 0,00075 m) występowały w narożach opakowania (Rys. 2 a2). Zrealizowane kolejne symulacje ewaluacyjne (typu SFRD dla d_1 i d_2), ze zmodyfikowanym i zróżnicowanym polem rozkładu grubości ścianki wytłoczyny znacząco zmniejszyły różnice w grubości ścianki opakowania (Rys. 2 b2). W zależności od rozpatrywanego kryterium (nr 1 lub nr 2) osiągnięto zróżnicowane rezultaty. Najbardziej wskazanym przypadkiem dla spełnienia kryterium nr 1 jest zastosowanie średnicy wytłoczyny $d_2 = 0,009$ m i symulacji (optymalizacji) nr 6 (Tab. 2).

Rys. 2. Przebieg symulacji rozdmuchiwania (czas: 0; 1,1; 2 s) wraz z przykładowymi uzyskanymi wartościami grubości ścianki butelki dla początkowej średnicy wytłoczyny $d_1 = 0.009$ m: a0) dla stałej grubości ścianki wytłoczyny g = 0,0002 m, a1) propagacja rozdmuchiwania wytłoczyny w czasie 1,1 s, a2) finalny rozkład grubości butelki, b0) wytłoczyna zoptymalizowana tech niką SFRD, b2) propagacja rozdmuchiwania wytłoczyny o zróżnicowanej grubości, b2) finalny rozkład grubości butelki z uwzględnieniem metody SFRD

Ten przypadek wyraźnie wskazuje, iż każdy obszar opakowania w 100 % posiada wartości grubości ścianki \leq 1. Osiągnięcie tego stanu wymaga jednak zastosowania większej ilości materiału polimerowego (196,74 g). Dla spełnienie kryterium nr 2 wydaję się najbardziej racjonalnym przyjęcie przypadku nr 4 (Tab. 2), gdzie uzyskuje się stosunkowo niską masę opakowania ok. 174 g przy jednoczesnym niespełnieniu kryterium nr 1 jedynie o wartości 2,96%. Z kolei zastosowanie wytłoczyny o średnicy d_1 generuje znacząco mniej korzystne relacje pod względem rozpatrywanych kryteriów. Prawie całkowite spełnienie kryterium nr 1 (symulacja 3 – Tab. 2) wymaga wykorzystania stosunkowo dużej ilości tworzywa polimerowego na wytworzenie opakowania (208 g). Wynika z tego jednoznacznie, że dla rozpatrywanego modelu geometrycznego opakowania średnica o wartości $d_1 = 0,006$ m jest niedostateczna z punktu widzenia realizacji procesu rozdmuchiwania i spełnieniu pożądanych kryteriów.

Tab. 2. Uwidocznienie wpływu początkowej średnicy wytłoczonego węża tworzywa
na uzyskany rozkład grubości ścianki butelki i jej masy

Średnica wytłoczyny,	Rodzaj symulacji	Procentowy rozkład grubości ścianki butelki dla danego przedziału wartości, [%]			Masa, [g]
լոոյ		> 0,0001 m	< 0,0001 m	= 0,0001 m	
0,006	Wąż const.	55,67	28,97	15,36	115,81
	1 SFRD	97,57	0,58	1,85	198,55
	2 SFRD	97,47	0,41	2,12	208,04
0,009	Wąż const.	95,21	2,96	1,83	173,72
	1 SFRD	97,39	0,46	2,15	197,44
	2 SFRD	95,76	0	4,24	196,74

Wnioski

Oprogramowanie *ANSYS-Polyflow*, daje możliwość realizacji testu numerycznego w zakresie modelowania zjawisk zachodzących podczas procesu formowania rozdmuchowego butelki.

Zastosowanie ustalonej średnicy wytłoczonego węża tworzywa i sterowanie rozkładem jego grubości osiąganym na skutek zadanych kroków optymalizacyjnych (z uwzględnieniem metody SFRD) pozwala na wybór określonego przypadku dla przyjętego kryterium końcowego. W rozpatrywanych przypadkach ujawniono, iż optymalizacja metodą SFRD może nie przynosić wcale pozytywnych rezultatów w przypadku jednoznacznego uzyskania jak najkorzystniejszych relacji dla spełnienia zarówno kryterium nr 1 i 2. Z punktu widzenia minimalizowania oddziaływania procesu i produktu na środowisko naturalne wydaje się najkorzystniejszym przypadek o stałej średnicy wytłoczonego węża wynoszącej 0,009 m i grubości ścianki 0,0002 m.

Rozpatrywany przypadek geometrii butelki należy uznać za częściowo złożony z uwagi na obecność uchwytu. W przypadku braku możliwości wykonania analiz numerycznych trudnym staje się dobranie właściwej geometrii wytłoczyny w celu spełnienia określonych kryteriów końcowych. Skorelowanie wyników symulacyjnych z próbami rzeczywistymi może znacząco skrócić czas wdrażania produktu na rynek, obniżyć jednostkowe zapotrzebowanie surowców na wytwór i negatywne oddziaływanie na środowisko.

LITERATURA

- Ansys Polyflow. User's Guide 2012. (06.2013): http://www.ansys.com
- Biglione J., (2016). Numerical simulation and optimization of the injection blow molding of polypropylene bottles - a single stage process. International Journal of Material Forming 9(4) 471–487. DOI: 10.1007/s12289-015-1234-y
- Blow Molded Plastics Market Analysis: by technology, by product, by application, and segment forecasts, 2018–2025 (06.2018): https://www.grandview research.com/industry-analysis/blow-molded-plastics-market
- Kutz M., (2011). Applied plastics engineering handbook. Processing and materials. Elsevier, USA
- PlasticEurope, (2018). Plastics the Facts 2017: An analysis of European plastics production, demand and waste data (06.2018): https:// www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_ facts_2017_FINAL_for_website_one_page.pdf
- Pepliński K., (2017). Użycie programu Ansys-Polyflow do wspomagania wytwarzania opakowań formowanych rozdmuchowo z preformy. *Inż. Ap. Chem.*, 56(5), 174-175
- Pepliński K. (2017). Ocena wpływu charakterystyki geometrycznej dyszy głowicy wytłaczarskiej i zawartości recyklatu na jakość rozdmuchiwanych wytworów technicznych. Przetwórstwo Tworzyw, 5(9-10), 417-426
- Pepliński K., (2018). Wpływ technologii otrzymywania gniazd w formach wtryskowych na efektywność przetwarzania tworzyw. *Polimery*, 63(9), 959-965. DOI: 10.14314/polimery.2018.9.8
- Pepliński K, Bieliński M., (2009). Właściwości przetwórcze i użytkowe pojemników wytwarzanych w procesie wytłaczania z rozdmuchiwaniem w zmiennych warunkach przetwórstwa – ocena wydajności i jakości procesu. *Polimery*, 54(6), 448–456
- Rosato D. V., (2004). Blow Molding Handbook. Hanser Pub., Munich