PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new multistable jerk chaotic system, its bifurcation analysis, backstepping control-based synchronization design and circuit simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we present results for a new dissipative jerk chaotic system with three quadratic terms in its dynamics.We describe the bifurcation analysis for the new jerk system and also show that the proposed system exhibits multi-stability. Next, we describe a backstepping control-based synchronization design for a pair of new jerk chaotic systems. MATLAB simulations are put forth to exhibit the various findings in this work. Furthermore, we exhibit a circuit simulation for the new jerk system using MultiSim.
Rocznik
Strony
123--152
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
  • School of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  • Non Destructive Testing Laboratory, Automatic Department, Jijel University, BP 98, 18000, Jijel, Algeria
autor
  • Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
Bibliografia
  • [1] O. Spitz, A. Herdt, J. Wu, G. Maisons, M. Carras, C.W. Wong, W. Elsasser, and F. Grillot: Private communication with quantum cascade laser photonic chaos. Nature Communications, 12(1), (2021). Article ID 3327. DOI: 10.1038/s41467-021-23527-9.
  • [2] X. Mao, Y. Sun, L. Wang, Y. Guo, Z. Gao, Y. Wang, S. Li, L. Yan, and A. Wang: Instability of optical phase synchronization between chaotic semiconductor lasers. Optics Letters, 46(12) (2021), 2824-2827. DOI: 10.1364/OL.413102.
  • [3] A. Racca and L. Magri: Robust optimization and validation of echo state networks for learning chaotic dynamics. Neural Networks, 142 (2021), 252-268. DOI: 10.1016/j.neunel.2021.05.004.
  • [4] W. Znu, H. Nikafshan Rad, and M. Hasanipanah: A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting. Applied Soft Computing, 108 (2021), Article ID 107434. DOI: 10.1016/j.asoc.2021.107434.
  • [5] S. Vaidyanathan: Hybrid chaos synchronization of 3-celIs cellular neural network attractors via adaptive control method. International Journal of PharmTech Research, 8(8), (2015), 61-73. https://www.sphinxsai.com/2015/ph_vol8_no8/ph01.htm
  • [6] Z. Yaghouui and H. Zarabadipour: Hybrid neural-network control of mobile robot system via anti-control of chaos. Mechatronic Systems and Control, 48(4), (2020), 239-248. DOI: 10.2316/J.2020.201-0058.
  • [7] E. Petavratzis, L. Moysis, C. Volos, I. Stouboulos, H. Nistazakis, and K. Valavanis: A chaotic path planning generator enhanced by a memory technique. Robotics and Autonomous Systems, 143 (2021), Article ID 103826. DOI: 10.1016/j.robot.2021.103826.
  • [8] Q. Shi, Y. Gao, Z. Li, J. Wan, and R. Sin: High-dynamic-range infrared radiometer based on chaos detection method. Infrared Physics and Technology, 116 (2021), Article ID 103787. DOI: 10.1016/j.infrared.2021.103787.
  • [9] A. Russomanno, M. Fava, and R. Fazio: Chaos and subdivision in infiniterange coupled quantum kicked rotors. Physical Review B, 103(22), (2021), Article ID 224301. DOI: 10.1103/PhysRevB.103.224301.
  • [10] E. Zambrano-Serrano and A. Anzo-Hernandez: A novel antimonotic hyperjerk system: Analysis, synchronization and circuit design. Physica D: Nonlinear Phenomena, 424 (2021), Article ID 132927. DOI: 10.1016/j.physd.2021.132927.
  • [11] K. Tian, C. Grebogi, and H-P. Ren: Chaos generation with impulse control: Application to non-chaotic systems and circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(7), (2021), 3012-3022. DOI: 10.1109/TCSI.2021.3075550.
  • [12] J. Ying, Y. Liang, J. Wang, Y. Dong, G. Wang, and M. Gu: A Instable locally-active memristor and its complex dynamics. Chaos, Solitons and Fractals, 148 (2021), Article ID 111038. DOI: 10.1016/j.chaos.2021.111038.
  • [13] Q. Gio, N. Wang, and G. Zhang: A novel current-controlled memristor-based chaotic circuit. Integration, 80 (2021), 20-28. DOI: 10.1016/j.vlsi.2021.05.008.
  • [14] S. Vaidyanathan and C. Volos: Advances in Memristors, Memristive Devices and Systems. Springer, Berlin, Germany, 2017.
  • [15] P. Sarasu and V. Sundarapandian: Adaptive controller design for the generalized projective synchronization of 4-scroll systems. International Journal of Systems Signal Control and Engineering Application, 5(2), (2012), 21-30. DOI: 10.3923/ijssceapp.2012.21.30.
  • [16] S. Vaidyanathan: Output regulation of Arneodo-Coullet chaotic system. Communications in Computer and Information Science, 133 (2011), 98-107. DOI: 10.1007/978-3-642-17881-8_10.
  • [17] F.S. Hasan: Design and analysis of grouping subcarrier index modulation for differential chaos shift keying communication system. Physical Communication, 47 (2021), Article ID 101325. DOI: 10.1016/j.phycom.2021.101325.
  • [18] P. Zanardi and N. Anand: Information scrambling and chaos in open quantum systems. Physical Review A, 103(6) (2021), Article ID 062214.
  • [19] A. Sambas, S. Vaidyanathan, I.M. Moroz, B. Idowu, M.A. Mohamed, M. Mamat, and W.S.M. Sanjaya: A simple multi-stable chaotic jerk system with two saddle-foci equilibrium points: Analysis, synchronization via backstepping technique and MultiSim circuit design. International Journal of Electrical and Computer Engineering, 11(4) (2021), 2941-2952. DOI: 10.11591/ijece.v11i4.pp2941-2952.
  • [20] C. Li, J.C. Sprott, W. Joo-Chen Thio, and Z. Gu: A simple memristive jerk system. IET Circuits, Devices and Systems, 15(4), (2021), 388-382. DOI: 10.1049/cds2.12035.
  • [21] F. Braun and A.C. Mereu: Zero-Hopf bifurcation in a 3D jerk system. Nonlinear Analysis: Real World Applications, 59 (2021), Article ID 103245. DOI: 10.1016/j.nonrwa.2020.103245.
  • [22] L. Kamdjeu Kengne, Y.P. Kamdeu Nkandeu, J.R. Mboupda Pone, A. Tiedeu, and H.B. Fotsin: Image encryption using a novel quintic jerk circuit with adjustable symmetry. International Journal of Circuit Theory and Applications, 49(5) (2021), 1470-1501. DOI: 10.1002/cta.2968.
  • [23] Q. Xu, S. Cheng, Z. Ju, M. Chen, and H. Wu: Asymmetric coexisting bifurcations and multi-stability in an asymmetric memristive diode-bridge-based Jerk circuit. Chinese Journal of Physics, 70 (2021), 69-81. DOI: 10.1016/j.cjph.2020.11.007.
  • [24] K. Lamamra, S. Vaidyanathan, W.T. Putra, E. Darnila, A. Sambas, and Mujiarto: A new 3-D chaotic jerk system with four nonlinear terms, its backstepping synchronization and circuit simulation. Journal of Physics: Conference Series, 1477(2) (2020), Article ID 022017. DOI: 10.1088/1742-6596/1477/2/022017.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51658a74-195b-4c70-80b7-4e7cb827493b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.