PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Liner Wall Thickness on the Penetration Performance of PETN-HTPB PBX-based Shaped Charges into Steel Targets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thickness of a shaped charge liner is one of the essential parameters that must be considered when optimizing penetration depth into a target material. In this paper, experimental and analytical studies have been implemented using shaped charges having copper liner thicknesses ranging from 0.7 to 1.3 mm in an optimization study of the influence of jet characteristics on the achieved penetration depths into steel targets. The shaped charges were filled with equal masses of PETN-polyurethane based PBX explosive charges and fired against steel targets placed at 29 mm stand-off distance. The experimental measurements show that the depth of jet penetration into steel targets increased with liner thickness up to a thickness of 1.1 mm, after which the penetration decreased again. A numerical study was also carried out using the hydrocode Autodyn to model the jets used in the optimization analysis, which accounted for the variation of penetration depth using different liner thicknesses. This analysis also showed why the penetration depth achieved with a liner thickness of 1.0 mm was not optimum due to its non-coherent formed jet. Instead, a liner with a wall thickness of 1.1 mm exhibited the optimum penetration depth of 12.8 cm.
Rocznik
Strony
63--90
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Technical Research Centre, Cairo, Egypt
  • Military Technical College, Egyptian Armed Forces, Kobry Elkobbah, 11765, Egypt
  • Military Technical College, Egyptian Armed Forces, Kobry Elkobbah, 11765, Egypt
  • Military Technical College, Egyptian Armed Forces, Kobry Elkobbah, 11765, Egypt
Bibliografia
  • [1] Walters, P.; Zukas, J. Fundamentals of Shaped Charge. John Wiley & Sons, 1989; ISBN-10: 0471621722.
  • [2] Elshenawy, T.; Elbeih, A.; Li, Q.M. Influence of Target Strength on the Penetration Depth of Shaped Charge Jets into RHA Targets. Int. J. Mech. Sci. 2018, 136: 234-242.
  • [3] Elshenawy, T.; Li, Q. Influences of Target Strength and Confinement on the Penetration Depth of an Oil Well Perforator. Int. J. Impact Engineering 2013, 54: 130-137.
  • [4] Voitenko, Y.I.; Zakusylo, R.V.; Wojewódka, A.T.; Gontar, P.A.; Gerlich, M.M.; Drachuk, O.G. New Functional Materials in Mechanical Engineering and Geology. Cent. Eur. J. Energ. Mater. 2019, 16(1): 135-149.
  • [5] Voitenko, Y.; Zakusylo, R.; Zaychenko, S. Influence of the Striker Material on the Results of High-Speed Impact at a Barrier. Cent. Eur. J. Energ. Mater. 2021, 18(3): 405-423.
  • [6] Nan, Y.X.; Jiang, J.W.; Wang, S.Y.; Men, J.B.; Chen, D.P. Penetration Capability of Shaped Charge Loaded with Different High-energy Explosives. Proc. 28th Int. Symp. Ballistics, 2014.
  • [7] Saran, S.; Ayısıt, O.; Yavuz, M.S. Experimental Investigations on Aluminium Shaped Charge Liners. Procedia Eng. 2013, 58: 479-486.
  • [8] Dehestani, P.; Fathi, A.; Daniali, H.M. Numerical Study of the Stand-off Distance and Liner Thickness Effect on the Penetration Depth Efficiency of Shaped Charge Process. Proc. Inst. Mech. Eng., Part C, 2019, 233(3): 977-986.
  • [9] Ou, J.H.; Jen-Bing, O.; Yan-Jing, J. The Design and Analysis for Shaped Charge Liner Using Taguchi Method. Int. J. Mechanics. 2014, 8: 53-61.
  • [10] Fujiwara, S.; Abiko, K. Ductility of Ultra High Purity Copper. Le Journal de Physique IV, 1995. 5: C7/295-300.
  • [11] Held, M. Liners for Shaped Charges. J. Battlefield Technol. 2001, 4(3): 1-6.
  • [12] Elbeih, A.; Zeman, S.; Jungová, M.; Akštein, Y.; Vávra, P. Detonation Characteristics and Penetration Performance of Plastic Explosives. Proc. Int. Autumn Semin. Propellants, Explos. Pyrotech.: Theory Pract. Energ. Mater., China, 2011, 508-13.
  • [13] Sućeska, M. EXPLO5 ‒ Computer Program for Calculation of Detonation Parameters. Proc. of 32nd Int. Annual Conf. ICT, Karlsruhe, Germany, 2001, 110/1-13.
  • [14] Peter, X.K.; Jiba, Z.; Olivier, M.; Snyman, I.M.; Mostert, F.M.; Sono, T.J. Prediction of Detonation and JWL EOS Parameters of Energetic Materials Using EXPLO5 Computer Code. Proc. South African Ballistic Organization, Cape Town, South Africa, 2016.
  • [15] Vasilescu, G.; Kovacs, A.; Gheorghiosu, E.; Garaliu, B.; Ilcea, G. Numerical Simulation for Determining Detonation Parameters of Explosive Substances Using EXPLO5 Thermo-chemical Prediction Software. MATEC Web of Conferences, 2020, 305, p. 00049.
  • [16] MatWeb, Material Property Data. Mitsubishi Chemical Advanced Materials, 2021, http://www.matweb.com/
  • [17] Malcolm, S. Autodyn Theory Manual. Century Dynamics, CA, 1997.
  • [18] Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. Proc. 7th Int. Symp. Ballistics, the Hague, the Netherlands, 1983, 541-547.
  • [19] Couque, H.; Boulanger, R.; Bornet, F. A Modified Johnson-Cook Model for Strain Rates Ranging from 10‒3 to 105 s‒1. J. Phys. IV France 2006, 134: 87-93.
  • [20] Tarver, C.M.; Tao, W.C.; Lee, C.G. Sideways Plate Push Test for Detonating Solid Explosives. Propellants Explos. Pyrotech. 1996, 21(5): 238-246.
  • [21] Lan, I.F.; Hung, S.C.; Chen, C.Y.; Niu, Y.M.; Shiuan, J.H. An Improved Simple Method of Deducing JWL Parameters from Cylinder Expansion Test. Propellants Explos. Pyrotech. 1993, 18(1): 18-24.
  • [22] Elek, P.M.; Džingalašević, V.V.; Jaramaz, S.S.; Micković, D.M. Determination of Detonation Products Equation of State from Cylinder Test: Analytical Model and Numerical Analysis. Therm. Sci. 2015. 19(1): 35-48.
  • [23] Kato, H.; Kaga, N.; Takizuka, M.; Hamashima, H.; Itoh, S. Research on the JWL Parameters of Several Kinds of Explosives. Mater. Sci. Forum 2004, 465-466: 271-276.
  • [24] Birkhoff, G.; MacDougall, D.P.; Pugh, E.M.; Taylor, S.G. Explosives with Lined Cavities. J. Appl. Phys. 1948, 19(6): 563-582.
  • [25] Pugh, E.M.; Eichelberger, R.J.; Rostoker, N. Theory of Jet Formation by Charges with Lined Conical Cavities. J. Appl. Phys. 1952, 23(5): 532-536.
  • [26] Elshenawy, T.; Elbeih, A.; Li, Q.M. A Modified Penetration Model for Copper-Tungsten Shaped Charge Jets with Non-uniform Density Distribution. Cent. Eur. J. Energ. Mater. 2016, 13(4): 927-943.
  • [27] Malcolm, S. Autodyn Jetting Tutorial, R. 3.0. Editor. Century Dynamics, US. 1997.
  • [28] Gürel, E. Modeling and Simulation of Shaped Charges. Master dissertation, Middle East Technical University, 2009.
  • [29] Elshenawy, T.; Elbeih, A.; Klapötke, T.M. A Numerical Method for the Determination of the Virtual Origin Point of Shaped Charge Jets Instead of Using Flash X-ray Radiography. J. Energ. Mater. 2018, 36(2): 127-140.
  • [30] Chou, P.C.; Flis, W.J. Recent Developments in Shaped Charge Technology. Propellants, Explos. Pyrotech. 1986, 11(4): 99-114.
  • [31] Aseltine, C.L. Analytical Predictions of the Effect of Warhead Asymmetries on Shaped Charge Jets. Army Ballistic Research Lab, Aberdeen Proving Ground MD, Report No. ARBRL-TR-02214, 1980.
  • [32] Hirsch, E. Scaling of the Shaped Charge Jet Break-Up Time. Propellants Explos. Pyrotech. 2006, 31(3): 230-233.
  • [33] Elshenawy, T.; Li, Q.M. Breakup Time of Zirconium Shaped Charge Jet. Propellants Explos. Pyrotech. 2013, 38(5): 703-708.
  • [34] Allison, F.E.; Vitali, R. A New Method of Computing Penetration Variables for Shaped Charge Jets. Aberdeen Proving Ground, Ballistic Research Lab., Report No 1184, Maryland, 1963.
  • [35] DiPersio, R.; Simon, J.; Merendino, A. Penetration of Shaped-charge Jets into Metallic Targets. Aberdeen Proving Ground, Ballistic Research Lab., Report No 1296, Maryland, 1965.
  • [36] Schwartz, W. Modified SDM Model for the Calculation of Shaped Charge Hole Profiles. Propellants Explos. Pyrotech. 1994, 19(4): 192-201.
  • [37] Design-Expert Software. StatEase®, 2020, https://www.statease.com/software/design-expert.
  • [38] Hasenberg, D. Consequences of Coaxial Jet Penetration Performance and Shaped Charge Design Criteria. Naval Postgraduate School, Report NPS-PH-10-001, Monterey, CA, US, 2010.
  • [39] Elshenawy, T.; Li, Q.M.; Elbeih, A. Experimental and Numerical Investigation of Zirconium Jet Performance with Different Liner Shapes Design. Def. Technol. 2022, 18: 12-26.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-516418ee-8888-452e-8b3a-f477df551f4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.