PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Falowniki trakcyjne kolejowych pojazdów szynowych – rozwiązania techniczne i kierunki rozwoju konstrukcji

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Static converters of railway vehicles - technical solutions and directions of construction development
Języki publikacji
PL
Abstrakty
PL
Nowoczesna technologia i ciągły rozwój na rynku komponentów elektronicznych pozwala na tworzenie bardziej energooszczędnych, lżejszych, cichszych i mniejszych systemów trakcyjnych [1]. W artykule przedstawione zostały różne systemy trakcyjne wraz z ich parametrami zależnymi od architektury pojazdu. Architektura pojazdu ściśle wiąże się z napięciem sieci trakcyjnej oraz typem przejazdów realizowanych przez te pojazdy (miejskie, regionalne, szybkie, towarowe) [2].
EN
Innovative technology and continuous development of the electronic components industry enables creation of components of higher energy-efficiency, lighter, quieter and even smaller traction systems [1]. The article presents different traction systems with their parameters which are highly depend on the vehicle architecture. The vehicle architecture is strongly related to the catenary line voltage and type of service provided by vehicles (urban, regional, fast, cargo) [2].
Rocznik
Strony
43--57
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • MEDCOM
  • MEDCOM
autor
  • Instytut Kolejnictwa
  • Instytut Kolejnictwa
Bibliografia
  • 1. Goikoetxea J., Peris E.: Roll2Rail. Developing the rolling stock of the future. European Railway Review, Vol. 21, Issue 5, p. 56-58, 2015.
  • 2. OPEUS D5.1 Modelling and strategies for the assessment and Optimisation of Energy Usage aspects of rail innovation. D05.1 Traction chain architecture characterization. Deliverable report. OPEUS. http://opeus-project.eu/IMG/pdf/opeus_d51_traction_chain_architecture_characterisation.pdf
  • 3. Tiago Oliveira Bastos Pinto de Sá. Traction Control in Electric Vehicles. Faculdade de Engenharia da Universidade do Porto, 2012.
  • 4. Abad G.: Power Electronics and Electric Drives for Traction Applications. Wiley, 2017.
  • 5. Roll2Rail. NEW DEPENDABLE ROLLING STOCK FOR A MORE SUSTAINABLE, INTELLIGENT AND COMFORTABLE RAIL TRANSPORT IN EUROPE D1.1 - Top level specification from Operators & Technology Search results systems. http://www.roll2rail.eu/download.aspx?id=7b6ca0ae-9af1-40a6-ac4c-be9e72a3f18b
  • 6. Biliński J. Napędy trakcyjne z zasobnikami energii (typy, konfiguracje, ograniczenia). XVII Ogólnopolska Konferencja Naukowa z zakresu Trakcji Elektrycznej SEMTRAK, Zakopane, 13-15 października 2016.
  • 7. OPEUS D6.1 Modelling and strategies for the assessment and Optimisation of Energy Usage aspects of rail innovation. DEL 6.1 Innovative technologies outlook update. http://opeus-project.eu/IMG/pdf/opeus_d61_innovative_technologies_outlook_update.pdf
  • 8. IEC TS 60034-25:2014 Rotating electrical machines – Part 25: AC electrical machines used in power drive systems – Application guide.
  • 9. IEC 62864-1: Railway applications – Rolling stock – Power supply with onboard energy storage system – Part 1: Series hybrid system.
  • 10. Biliński J. Napędy trakcyjne z zasobnikami energii (typy, konfiguracje, ograniczenia). Technika Transportu Szynowego nr 10, 2016.
  • Literatura uzupełniająca:
  • 1. ABB Group. Power Electronic Transformer for railway on-board applications: An overview. Zurich, Switzerland: ABB Group. 2013.
  • 2. Allenbach JM, Chapas P, Compte M, Caller T. Traction Electrique. Lausanne, Switzerland: Presses polytechnique et universitaires romandes, 2008.
  • 3. Bose BK. Modern Power Electronics And AC Drives. Upper Saddle River, NJ: Prentice Hall, 2002.
  • 4. De Doncker RWAA, Divan DM, Kheraluwala MH. A three-phase soft-switched high-power-density dc/dc converter for high power applications. IEEE Trans. Ind. Appl. 1991; 27(1): 63–73.
  • 5. Dujic D. Power Electronic Transformer for Railway On-board Applications: An overview. Zurich, Switzerland: ABB.
  • 6. Eckel H-G, Bakran MM, Krafft EU, Nagel A. A new family of modular IGBT converters for traction applications, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1665438, 2005.
  • 7. Ehsani M., Gao Y., Gay S.E., Emadi A.: Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. Fundamentals, Theory, and Design. CRC Presss, 2005.
  • 8. Gerekial W. Bi-directional Power Converters for Smart Grids: Isolated bidirectional DC/DC converter. Norwegian University of Science and Technology (NTNU), 2014.
  • 9. Gu S. Research on control strategy of the emergency self-traction system in urban rail transit. International Conference on Electrical and Control Engineering, 2011 Yichang, China.
  • 10. IEC 62864-1: Railway applications – Rolling stock – Power supply with onboard energy storage system – Part 1: Series hybrid system
  • 11. Inoue S., Akagi H.: A bi-directional DC/DC converter for an energy storage system. Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, 25 February to 1 March 2007: 761–767.
  • 12.Kheraluwala M.H., Gascoigne R.W., Divan D.M.: Performance characterization of a high-power dual active bridge dc-to-dc converter. IEEE Trans. Ind. Appl. 1992; 28(6): 1294–1301.
  • 13. Link A.N., O’Connor A.C., Scott T.J.: Battery Technology for Electric Vehicles. Routledge, 2015
  • 14. Nikowitz M.: Advanced Hybrid and Electric Vehicles. System Optimization and Vehicle Integration. Springer, 2016.
  • 15. Ngo T. A single-phase bidirectional dual active half-bridge converter. Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, 5–9 February 2012: 1127–1133.
  • 16. Perez-Pinal F.J.: An Integrated Electric Vehicle Curriculum. Electric Vehicles. The Benefits and Barriers. InTech, 2011.
  • 17. Steimel A. Electric Traction Motive Power and Energy Supply. Munich, Germany: Oldenbourg Industrieverlag Gmbh, 2008.
  • 18. Young K., Wang C., Wang L., Strunz K. Electric Vehicle Integration into Modern Power Networks, Power Electronics and Power Systems. Springer, 2013.
  • 19. Yuana D. Design and analysis of emergency self-traction system for urban rail transit vehicles. International Conference on Future Energy, Environment, and Materials, 2012, Suzhou, China.
  • 20. Zhao B., Song Q., Liu W, Sun Y. Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system. IEEE Trans Power Electron, 2014; 29(8): 4091–4106.
  • 21. Schuderer J., Liu Ch., Pavlicek N., Salvatore G., Loisy J.-Y., Schröder A., , Torresin D., Gradinger T., Baumann D., Mohn F., Andreas Apelsmeier A.: High-Power SiC and Si Module Platform for Automotive Traction Inverter. Published at PCIM Europe 2019, www.pcim-europe.com.
  • 22. Yamamoto T.: Trends in Recent Research on Main Circuits and Traction Systems for Railway Vehicles. QR of RTRI, Vol. 59, No. 1, Feb. 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-516175b8-e96f-40e1-8267-7b9c8acacb6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.