PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Soil Salinity Classification Using Machine Learning Algorithms and Radar Data in the Case from the South of Kazakhstan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil salinity is one of the major impact factors on agriculture in the South of Kazakhstan. Prediction and estimation of soil salinity before planting a season usually helps to plan for the leaching of the salt. In the paper, satellite data such as radar data and machine learning algorithms, were used to classify soil salinity. Numerical results were presented for the Turkestan region, which contains more than 102 points. The machine learning algorithms, including Gaussian Process, Decision Tree, and Random Forest, were compared. The evaluation of the model score was realized by using metrics, such as accuracy, Recall, and f1. In addition, the influence of the dataset features on the classification was investigated using machine learning algorithms. The research results showed that the Gaussian Process model has the best score among considered algorithms. In addition, the results are consistent with the outcome of the Shapley Additive exPlanations (SHAP) framework.
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Institute of Information and Computational Technologies CS MES RK, 050010, 28 Shevchenko Str., Almaty, Kazakhstan
  • Institute of Information and Computational Technologies CS MES RK, 050010, 28 Shevchenko Str., Almaty, Kazakhstan
  • S. Seifullin Kazakh Agro Technical University, 010011, 62 Zhenis Ave., Nur-Sultan, Kazakhstan
  • Lublin University of Technology, 20-618, 38D Nadbystrzycka Str., Lublin, Poland
Bibliografia
  • 1. Abuelgasim, A., Ammad, R. 2019. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data, Remote Sensing Applications: Society and Environment, 13, 415–425.
  • 2. Akramkhanov, A., Vlek, P.L. 2012. The assessment of spatial distribution of soil salinity risk using neural network. Environmental monitoring and assessment,184(4), 2475–2485.
  • 3. Amirgaliyev, Y., Shamiluulu, S., Merembayev, T., Yedilkhan, D. 2019. Using machine learning algorithm for diagnosis of stomach disorders. In: International Conference on Mathematical Optimization Theory and Operations Research, 343–355.
  • 4. Asfaw, E., Suryabhagavan, K., Argaw, M. 2018. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17, 250–258.
  • 5. Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.
  • 6. Fernandez-Buces, N., Siebea, C., Cramb, S., Palacio, J.L. 2006. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texaco, Mexico. J. Arid Environm, 65(4), 644–667.
  • 7. Gabdullin, B., Zhogolov, A., Savin, I., Otarov, A., Ibrayeva, M., Golovanov, D. 2015. Application of multi-spectral satellite data for interpretation of soil salinization of the irrigated areas (case study of Southern Kazakhstan). Moscow University Geography Bulletin, 5, 34–41.
  • 8. Haralick, R.M., Shanmugam, K., Dinstein, I.H. 1973. Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 6, 610–621.
  • 9. Hoa, P.V., Giang, N.V., Binh, N.A., Hai, L.V.H., Pham, T.D., Hasanlou, M., Tien Bui, D. 2019. Soil salinity mapping using SAR sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sensing, 11(2).
  • 10. Laiskhanov, S.U., Otarov, A., Savin, I.Y., Tanirbergenov, S.I., Mamutov, Z.U., Duisekov, S.N., Zhogolev, A. 2016. Dynamics of soil salinity in irrigation areas in South Kazakhstan. Polish J. Env. Studies, 25, 2469–2475.
  • 11. Lundberg, S.M., Lee, S.I. 2017. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
  • 12. Masoud, A.A., Koike, K. 2006. Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt. J. Arid Environm, 66(1), 151–167.
  • 13. Merembayev, T., Kurmangaliyev, D., Bekbauov, B., Amanbek, Y. 2021. A Comparison of machine learning algorithms in predicting lithofacies: Case studies from Norway and Kazakhstan. Energies, 14(7), 1896.
  • 14. Muhamedyev, R., Yakunin, K., Kuchin, Y.A., Symagulov, A., Buldybayev, T., Murzakhmetov, S., Abdurazakov, A. 2020. The use of machine learning “black boxes” explanation systems to improve the quality of school education. Cogent Engineering, 7(1), 1769349.
  • 15. Nickisch, H., Rasmussen, C.E. 2008. Approximations for binary Gaussian process classification. Journal of Machine Learning Research, 9, 2035–2078.
  • 16. Ondrasek, G., Rengel, Z. 2021. Environmental salinization processes: Detection, implications & solutions, Science of the Total Environment, 754.
  • 17. Pankova, E.I., Mazikov, V.M., Isaev, V.A., Jamnova, I.A. 1978. Experience in the use of aerial photographs for the characteristics of soil salinity rainfed areas serozem area. Pochvovedenie, 3, 82–85. (in Russian)
  • 18. Rokach, L., Maimon, O. 2005. Decision trees. In Data Mining and Knowledge Discovery Handbook. Springer: Berlin, Germany, 165–192.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-515c533d-888d-4e75-bd34-04ec87305cbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.