PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of CO2 in Saline Aquifers under Deep Ground Water Systems in Urumqi River Basin of Xinjiang, China

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The future emissions of carbon dioxide (CO2) are likely to increase beyond the current levels due to rapid industrialization in China. Several methods have been proposed as possible mitigation strategies to reduce the anthropogenically emitted CO2 from the atmosphere and water. This study provided the description of stratigraphic structure of the basin through analysis between the regional groundwater flow and the injection of carbon dioxide. The geological and geomechanical data was used to model the aquifer for geostatistical analysis. Data storage sites for geotechnical provided critical information to assess the potential risks and associated sequestration. The movement of groundwater occurred slowly with infiltration through the pores. CO2 was stored in deep aquifers for longer periods due to slow movement of water downstream. Over time, the injected CO2 dissolved water, forming minerals through chemical reactions, which converted it into carbonate minerals resulting in permanent sequestration.The chemistry of formation waters in this basin is important for many geological processes, such as the fluid-rock interaction, the migrating paths of fluid and the entrapment mechanisms of hydrocarbon. In this study, the emissions of CO2 were shifted several kilometers away from the storage area, such that the regional groundwater mixing affected the quality of surface water with consequent of toxicity to every living creature that depended on the available water from Urumqi River Basin. Injection of fluids into deep saline aquifers is therefore considered as the best mitigating strategy for CO2 abatement in water due to its enormous storage capacity.
Twórcy
  • Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, Kenia
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, 818 Beijing Road south, Urumqi, Xinjiang, 830011, China
Bibliografia
  • 1. Celia M.A., Bachu V., Nordbotten J.M., Bandilla K.W. 2015. Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations, DOI:10.1002/2015WR017609.
  • 2. Bachu S. & Bennion D.B. 2006. Dependence on Temperature, Pressure, and Salinity of the IFT and Relative Permeability Displacement Characteristics of CO2 Injected in Deep Saline Aquifers. Society of Petroleum Engineers San Antonio, Texas, USA.
  • 3. IPCC. 2001. The scientific basis. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., Van der Linden P.J., Dai X., Maskell K., Johnson C.A., eds. Third assessment report of the Intergovernmental Panel on Climate Change”, Cambridge: Cambridge University Press.
  • 4. Rind D., Suozzo R., Balachandran N.K., Prather M.J. 1990. Climate Change and The Middle Atmosphere, Part 1: The Double CO2 Climate. New York.
  • 5. Kattenberg A., Giorgi F., Grassl H., Meehl G.A., Mitchell J.F.B., Stouffer R.J., Tokioka, Weaver A.J., Wigley T.M.L. 1996. Climate models – projections of future climate, In Climate Change 1995: The Science of Climate Change, 285–357, (Eds J. T. Houghton, L.G.M. Filho, B.A. Callander, N. Harris, A. Kattenberg, andK. Maskell), Cambridge University Press, Cambridge, UK.
  • 6. Stag J., Mayr E., Koch H., Hattermann F.F., Huang S. 2014. Effects of Climate Change on the Hydrological Cycle in Central and Eastern Europe. In: Rannow S., Neubert M. (eds) Managing Protected Areas in Central and Eastern Europe Under Climate Change, Advances in Global Change Research, Springer, Dordrecht, 58. DOI:10.1007/978–94–007-7960–0_3
  • 7. Garcia J.E. 2003. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers, University of California, Berkeley Nicholas Sitar, Chair.
  • 8. Bachu S. 2008. CO2 storage in geologic media: role, means, status and barriers to Deployment. Progress in Energy and Combustion Science, 34, 254–273.
  • 9. Zerai B. 2005. CO2 Sequestration in Saline Aquifer: Geochemical Modeling, Reactive Transport Simulation And Single-phase Flow Experiment. Trondheim, Norway.
  • 10. Audigane P., Gaus I., Czernichowski-Lauriol I., Pruess K., Xu T. 2007. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner Site, North Sea. American Journal of Science, 307, 974–1008.
  • 11. Gu W.Z., Seiler K.P., Stichler W. 2008. Transient response of groundwater systems to climate changes. Geological Society, London, Special Publications London.
  • 12. Alley W.M., Reilly T.E., Franke O.L. 2007. Sustainability of Ground-Water Resources, General facts and concepts about ground water. U.S. Geological Survey Circular, 1186.
  • 13. Saylor B.Z. & Zerai B. 2004. Injection and Trapping of Carbon. Dioxide in Deep Saline Aquifers, The Fossil Fuel Cycle Geological Society, London, Special Publications, 236(1), 285–296. DOI:10.1144/GSL.SP.2004.236.01.17.
  • 14. Cole B.S., Baptist J., McPherson O.L. 2000. Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA, Hydrology Program, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.
  • 15. Zoback M.D., Barton C.A., Brudy M., Castillo D.A., Finkbeiner T., Grollimund B.R., Moos D.B., Peska P., Ward C.D., Wiprut D.J., 2003, Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40, 1049–1076. DOI:10.1016/j.ijrmms.2003.07.001
  • 16. Bachu S., Nordbotten J.M., Michael A.C. 2003. Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection. Springer Publishers.
  • 17. Ranjith P.G., Perera M.S.A., Khan E. 2012. A study of safe CO2 storage capacity in saline aquifers: a numerical study. International Journal of Energy Research, 37(3) DOI:10.1002/er.2954
  • 18. Gunter W.D., Stefan B., Law D.H.S. 2006. Economic Feasibility of CO2 Disposal in Aquifers within the Alberta Sedimentary Basin, Canada, T.J. McCann and Associates Ltd, Calgary, Alberta, Canada, T2P 3P4. Elsevier Science.
  • 19. Li X., Wei N., Liu Y., Fang Z., Dahowski R.T., Davidson C.L. 2009. CO2 point emission and geological storage capacity in China. Energy Procedia, 1(1), 2793–2800.
  • 20. Kyle C.M., Robert H.W., Michael A.C. 2006. Opportunities for low-cost CO2 storage demonstration projects in China, Department of Civil and Environmental Engineering, Princeton, NJ, USA.
  • 21. Anne N.O. & Yilian, L. 2010. Numeric modeling of carbon dioxide sequestration in deep saline aquifers in Wangchang Oil field-Jianghan Basin, China. Journal of American Sciences, 6(8).
  • 22. Baojun B., Yang F., Tang D., Shari D.N., Wronkiewicz D. 2010. Characteristics of CO2 sequestration in saline aquifers. China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg.
  • 23. Gale J. 2004. Geological storage of CO2: What do we know, where are the gaps and what more needs to be done? Energy, 29, 1329–1338.
  • 24. Dentz M. & Tartakovsky D.M. 2008. Abrupt-interface solution for carbon dioxide injection into porous media. Transport, Porous Med. 51, 7, 1–13.
  • 25. Li X., Wei N., Liu Y., Fang Z., Dahowski T.R., Davidson L.C. 2009. CO2 point emission and geological storage capacity in China. Energy Procedia, 1, 2793–2800.
  • 26. Lucier A. & Zoback M. 2008. Assessing the economic feasibility of regional deep saline aquifer CO2 injection and storage: A geomechanics-based workflow applied to the Rose Run sandstone in Eastern Ohio, USA. International Journal of greenhouse control, 2, 230–247.
  • 27. Imaseki Y., Ohsumi T., Tomoda T., Uno M., Ohkuma H. 2005. Numerical simulation of the injection and migration behavior of carbon dioxide, in Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, 2181–2184.
  • 28. Riaz A., Hesse M., Tchelepi H.A., Orr F.M.Jr. 2006. Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111.
  • 29. Price J. & Smith B. 2008. Geologic storage of carbon dioxide, staying safely Underground, IEA Greenhouse gas R&D Programme.
  • 30. Lucier A., Zoback M., Neeraj G., Ramakrishnan T.S. 2006. Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio RiverValley region. The American Association of Petroleum Geologists/Division of Environmental Geosciences. American Geosciences.
  • 31. Pruess K., García J., Kovscek T., Oldenburg C., Rutqvist J., Steefel C., Xu T. 2004. Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2”, Energy 29, 1431–1444.
  • 32. Nuth M. & Laloui L. 2008. Effective stress concept in unsaturated soils: Clarification and validation of a unified framework. Int. J. Numer. Anal. Met. 32, 771–801.
  • 33. Birkholzer J.T., Zhou Q., Tsang C.F. 2008. Largescale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems. Int. J. Greenhouse Gas Control, 3(2), 181–194.
  • 34. Bachu S. & Bennionb D.B. 2009. Dependence of CO2-brine interfacial tension on aquifer pressure, temperature and water salinity, Alberta Research Council Canada.
  • 35. Li L., Mupenzi J.P., Chen X., Achal V., Bao A., Habiyaremye G. 2011. Study on productivity of epilithic algae in Urumqi River Basin in Northwest China. African Journal of Microbiology Research, 5(14), 1888 –1895. DOI:10.5897/AJMR11.444
  • 36. Li P., Zhou D., Zhang C., Chen G. 2015. Assessment of the effective CO2 storage capacity in the Beibuwan Basin, offshore of southwestern P.R. China. International Journal of Greenhouse Gas Control, 37, 325–339.
  • 37. Harbison J. & Cox M. 2002. Hydrological characteristics of groundwater in a subtropical coastal plain with large variations in salinity: Pimpama, Queensland, Australia. Hydrological Sciences Journal, 47(4), 651 –665. DOI:10.1080/02626660209492966
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5154d2cb-4b28-4fad-8e13-4bd90a8901a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.