Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Smartfon jako narzędzie sterowania inteligentnym systemem nawadniania bazującym na technologii łączności dalekiego zasięgu (LoRa)
Języki publikacji
Abstrakty
Keeping proper soil moisture is essential in growing good quality and efficient fruit yield. To that effect, soil moisture level must be controlled, to maintain proper watering. A smartphone application was developed to operate a smart farm watering system. It monitors the soil’s moisture and launches sprayers to water dried areas. The system’s architecture was built in a distributed client-server computing system, in a small computing grid. The grid was built across long range (LoRa) communication networks with the same ID, but different addresses. In terms of integration, the system was built using autonomous microprocessors, which consist of a server and five client microprocessors. A smartphone was used as the server of a central controller, and four moisture detection modules and a water spraying system module were used as autonomous clients. The server was inter-connected with the clients via a star-type topology network in the polling processes. Each client module autonomously analyzes the measured digital voltage of the moisture sensor plugged into the soil. When the server sends queries regarding the status of the moisture level, the client sends the request signal to the server using the LoRa communication technology. The communication between the server and the clients is based on the LoRa communication technology. The LoRa-to-Bluetooth converter is used to connect the Bluetooth and the LoRa signal. The field test was performed in a watermelon field, with an area of approximately 6600 m2. The water spraying system constructed with LoRa communication technology could successfully manage and control the moisture level in the field test.
Utrzymanie odpowiedniej wilgotności gleby jest niezbędne do uzyskania dobrej jakości i wydajnego plonu. W tym celu należy kontrolować poziom wilgotności gleby. Do obsługi inteligentnego systemu nawadniania gospodarstwa opracowano aplikację na smartfona, która monitoruje wilgotność gleby i uruchamia opryskiwacze do podlewania przesuszonych obszarów. Architektura aplikacji została zbudowana w formie rozproszonego systemie obliczeniowego klient-serwer, na bazie małej sieci obliczeniowej dalekiego zasięgu (LoRa) o tym samym ID, ale różnych adresach. Do integracji system wykorzystuje autonomiczne mikroprocesory składające się z serwera i pięciu mikroprocesorów-klientów. Jako serwer centralnego sterownika wykorzystano smartfon, a jako autonomiczne klienty cztery moduły wykrywania wilgoci oraz moduł systemu zraszania wodą połączone z klientami za pomocą sieci o topologii gwiazdy. Każdy moduł kliencki autonomicznie analizuje zmierzone napięcie cyfrowe czujnika wilgotności umieszczonego w glebie. Kiedy serwer odpytuje o poziom wilgotności, klient wysyła sygnał do serwera za pomocą technologii komunikacji dalekiego zasięgu (Low-Range technology, LoRa). Komunikacja pomiędzy serwerem a klientami oparta jest na technologii komunikacyjnej LoRa i zintegrowana z Bluetooth za pomocą konwertera. Eksperyment polowy przeprowadzono na polu arbuzów o powierzchni około 6600 m2. System zraszania wodą skonstruowany w technologii komunikacji LoRa z powodzeniem kontrolował poziom wilgotności w teście polowym, i zarządzał nim.
Czasopismo
Rocznik
Tom
Strony
59--74
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- School of Computer Science, Semyung University, South Korea
Bibliografia
- Abhiram, M.S.D., Kuppili, J., & Manga, N.A. (2020). Smart Farming System using IoT for Efficient Crop Growth. In 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 22-23 February 2020 (pp. 1-4). IEEE.
- Hwang, K., Fox, G.C., & Dongarra, J.J. (2013). Distributed and Cloud Computing from Parallel Processing to the Internet of Things. San Mateo: Elsevier.
- Jabro, J.D., Stevens, W.B., Iversen, W.M, Allen, B.L., & Sainju, U.M. (2020). Irrigation Scheduling Based on Wireless Sensors Output and Soil-Water Characteristic Curve in Two Soils, Sensors, 20(5), 1336.
- Lee, K.M. (2017). Construction of a Harmful Animals Scaring System Protecting Plantation Farm with Smart Phone Application. International Information Institute (Tokyo). Information, 20(9A), 6277-6285.
- Lee, K.M. (2019). Implementation of a Smart Phone Application Controlling Agricultural Chemical Spray System with Bluetooth Communication. Information: an international Interdisciplinary Journal, 22(2), 85-93.
- Lee, K.M., (2018). Design of a Smart Phone Application Controlling Agricultural Watering System with a Drone. In Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering, 25-27 October 2018 (pp. 30-32) San Francisco, USA: International Association Engineers.
- Lee, K.M., (2022a). Distributed Computing Agriculture Water Spraying System Using LORA Communication. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), 20-22 July 2022 (pp. 1-5). IEEE.
- Lee, K.M., (2022b). Application of the LORA Communication Technology to a Drone Monitoring and Chemical Spraying System on Agriculture Field. International Information Institute (Tokyo). Information, 5(4), 245-260.
- Mah, S.H., & Kim, B.S., (2019). Lo-Ra Technology Analysis and LoRa Use Case Analysis By Country. The Journal of The Institute of Internet, Broadcasting and Communication, 19(1), 15-20.
- Millán, S., Campillo, C., Casadesús, J., Pérez Rodríguez, J.M., & Prieto, M.H., (2020). Automatic Irrigation Scheduling on a Hedgerow Olive Orchard Using an Algorithm of Water Balance Readjusted with Soil Moisture Sensors. Sensors, 20(9), 2526.
- Othman, M.M., Ishwarya, K.R., Ganesan, M., & Loganathan, G.B. (2021). A Study on Data Analysis and Electronic Application for the Growth of Smart Farming. Alinteri Journal of Agriculture Sciences, 36(1), 209-218.
- Placidi, P., Gasperini, L., Grassi, A., Cecconi, M., & Scorzoni, A., (2020). Characterization of Low-Cost Capacitive Soil Moisture Sensors for IoT Networks. Sensors, 20(12), 3585.
- Sharmrat, F.M.J.M., Md Asaduzzaman, Ghosh, P., Md Sultan, D., & Tasmin, Z., (2020). A Web Based Application for Agriculture: “Smart Farming System”. International Journal of Emerging Trends in Engineering Research, 8(6), 2309-2320.
- Sivabalan, K.N., Anandkumar, V., & Balakrishnan, S., (2020). IOT Based Smart Farming for Effective Utilization of Water and Energy. International Journal of Advanced Science and Technology, 29(7s), 2496-2500.
- Tagarakis, A.C, Dordas, C., Lampridi, M., Kateris, D., & Bochtis, D., (2021). A Smart Farming System for Circular Agriculture. Engineering Proceedings, 9(1), 10.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51540b5f-2050-467f-9233-ad74214d5d76