Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a method to estimate vehicle speed automatically, including cars and motorcycles under mixed traffic conditions from video sequences acquired with stationary cameras in Hanoi City of Vietnam. The motion of the vehicle is detected and tracked along the frames of the video sequences using YOLOv4 and SORT algorithms with a custom dataset. In the method, the distance traveled by the vehicle is the length of virtual point-detectors, and the travel time of the vehicle is calculated using the movement of the centroid over the entrance and exit of virtual point-detectors (i.e., region of interest), and then the speed is also estimated based on the traveled distance and the travel time. The results of two experimental studies showed that the proposed method had small values of MAPE (within 3%), proving that the proposed method is reliable and accurate for application in real-world mixed traffic environments like Hanoi, Vietnam.
Czasopismo
Rocznik
Tom
Strony
17--26
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
- University of Transport and Communications, Faculty of Environment and Transport Safety; Hanoi, Vietnam, 100000
autor
- Southwest Jiaotong University, School of Transportation and Logistics; Chengdu, China, 611756
autor
- University of Transport and Communications, Faculty of Electrical-Electronic Engineering; Hanoi, Vietnam, 100000
Bibliografia
- 1. Wang, J.M. & Chung, Y-C & Lin, S. & Chang, S-L. & Cherng, S. & Chen, S-W. (eds.). Vision-based traffic measurement system. In: Proceedings of the 17th International Conference on Pattern Recognition. 2004 ICPR 2004. 2004: IEEE.
- 2. Ibrahim, O. & ElGendy, H. & ElShafee, A.M. Speed Detection Camera System using Image ProcessingTechniques on Video Streams. International journal of computer and electrical engineering. 2011. Vol. 3. No. 6. P. 771-778.
- 3. Wang, J-X (ed.). Research of vehicle speed detection algorithm in video surveillance. In: 2016 International Conference on Audio, Language and Image Processing (ICALIP). 2016: IEEE.
- 4. Lan, J. & Li, J. & Hu, G. & Ran, B. & Wang, L. Vehicle speed measurement based on gray constraint optical flow algorithm. Optik. 2014. Vol. 125. No. 1. P. 289-295.
- 5. Qimin, X. & Xu, L. & Mingming, W. & Bin, L. & Xianghui, S & editors. A methodology of vehicle speed estimation based on optical flow. In: Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics. 2014: IEEE.
- 6. Girshick, R. & Donahue, J. & Darrell, T. & Malik, J. (eds.). Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
- 7. Girshick, R. (ed.). Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. 2015.
- 8. Ren, S. & He, K. & Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems. 2015. Vol. 28. P. 1-9.
- 9. Redmon, J. & Divvala, S. & Girshick, R. & Farhadi, A. (eds.). You only look once: Unified, realtime object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- 10. Liu, W. & Anguelov, D. & Erhan, D. & Szegedy, C. & Reed, S. & Fu, C-Y & et al. (eds.). Ssd: Single shot multibox detector. In: European conference on computer vision. 2016: Springer.
- 11. Kumar, A. & Khorramshahi, P. & Lin, W-A. & Dhar, P. & Chen, J-C. & Chellappa, R. (eds.). A semi-automatic 2D solution for vehicle speed estimation from monocular videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018.
- 12. He, K. & Gkioxari, G. & Dollár, P. & Girshick, R. (eds.). Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision. 2017.
- 13. Bewley, A. & Ge, Z. & Ott, L. & Ramos, F. & Upcroft, B. (eds.). Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP). 2016: IEEE.
- 14. Biswas, D. & Su, H. & Wang, C. & Stevanovic, A. Speed estimation of multiple moving objects from a moving UAV platform. ISPRS International Journal of Geo-Information. 2019. Vol. 8. No. 6. No. 259. P. 1-15.
- 15. Pham, P. & Nguyen, D. & Do, T. & Ngo, T.D. & Le, D-D (eds.). Evaluation of deep models for real-time small object detection. In: International conference on neural information processing. 2017: Springer.
- 16. Lin, T-Y & Maire, M. & Belongie, S. & Hays, J. & Perona, P. & Ramanan, D. & et al. (eds.). Microsoft coco: Common objects in context. In: European conference on computer vision. 2014: Springer.
- 17. Liu, K. & Ye, Y. & Li, X. & Li, Y. (eds.). A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation. In: Journal of Physics: Conference Series; 2018: IOP Publishing.
- 18. Liu, C-M. & Juang, J-C. Estimation of lane-level traffic flow using a deep learning technique. Applied Sciences. 2021. Vol. 11. No. 12. No. 5619.
- 19. Bochkovskiy, A. & Wang, C-Y & Liao, H-YM. Yolov 4: Optimal speed and accuracy of object detection. arXiv: Computer Vision and Pattern Recognition. 2020. P. 1-17.
- 20. Wojke, N. & Bewley, A. & Paulus, D. (eds.). Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). 2017: IEEE.
- 21. Gauttam, H.K. & Mohapatra, R.K. (eds.). Speed prediction of fast approaching vehicle using moving camera. In: International Conference on Computer Vision and Image Processing. 2019: Springer.
- 22. Li, X. & Liu, Y. & Zhao, Z. & Zhang, Y. & He, L. A deep learning approach of vehicle multitarget detection from traffic video. Journal of Advanced Transportation. 2018. Article ID 7075814.
- 23. Sang, J. & Wu, Z. & Guo, P. & Hu, H. & Xiang, H. & Zhang, Q. & et al. An improved YOLOv 2 for vehicle detection. Sensors. 2018. Vol. 18. No. 12. Article No. 4272.
- 24. Ćorović, A. & Ilić, V. & Ðurić, S. & Marijan, M. & Pavković, B. (eds.). The real-time detection of traffic participants using YOLO algorithm. In: 2018 26th Telecommunications Forum (TELFOR); 2018: IEEE.
- 25. Seong, S. & Song, J. & Yoon, D. & Kim, J. & Choi, J. Determination of vehicle trajectory through optimization of vehicle bounding boxes using a convolutional neural network. Sensors. 2019. Vol. 19. No. 19. Article No. 4263.
- 26. Nguyen, H.V. & Vuong, X.C. & Vu, T.T. A Fuzzy Traffic Signal Control Method for a Single Intersection Under Mixed Traffic Conditions. Technology. 2020. Vol. 11. No. 10. P. 1715-1723.
- 27. Vuong, X.C. & Phan, X.V. & Mou, R.F. & Vu, T.T. & Vu, V.D. & Nguyen, D.N. Vehicle Detection and Counting Under Mixed Traffic Conditions in Vietnam Using Yolov 4. International Journal Advanced Research Engineering a Technology. 2021. Vol. 12. No. 2. P. 722-730.
- 28. Wang, C-Y & Liao, H-YM & Wu, Y-H & Chen, P-Y & Hsieh, J-W & Yeh, I-H (eds.). CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 2020.
- 29. He, K. & Zhang, X. & Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence. 2015. Vol. 37. No. 9. P. 1904-1916.
- 30. Liu, S. & Qi, L. & Qin, H. & Shi, J. & Jia, J. (eds.). Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- 31. Redmon, J. & Farhadi, A. Yolov 3: An incremental improvement. arXiv. 2018. No 1804.02767. P. 1-6.
- 32. Neubeck, A. & Van Gool, L. (eds.). Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR'06). 2006: IEEE.
- 33. Tzutalin. labelImg 2020. Available at: https://github.com/tzutalin/labelImg.
- 34. Google. Welcome To Colaboratory 2022. Available at: https://colab.research.google.com/.
- 35. Chu, C.M. & Kazushi, S. & Shoji, M. The speed, flow and headway analyses of motorcycle
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5147894a-61a3-4af3-ab66-c242537ce053