Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To investigate the early mechanical response of high-early-strength high ductility concrete (HES-HDC), a four-point bending test was conducted. The effects of fiber type, fiber content, curing age, sand-binder ratio (s/b), and hydroxypropyl methyl-cellulose (HPMC) content on the crack pattern, load–deflection curve, flexural strength, and deflection of HES-HDC were studied. Based on the test results, a flexural toughness evaluation method suitable for the characteristics of HDC was proposed. The results showed that under flexural load, the load–deflection curve of HES-HDC exhibited a deflection-hardening response, with multiple cracks developed during the failure process. The flexural strength of HES-HDC reaches more than 5 MPa in 2 h, meeting the requirements for open traffic. Fiber type, fiber content, and curing age had a significant impact on the cracking behavior, deflection-hardening response, and flexural strength of HES-HDC. The higher the fiber pullout proportion and bridging stress during the crack-bridging was, the higher the deflection and energy absorption of HES-HDC exhibited. The existing flexural toughness evaluation methods were not applicable for HDC assessment due to their inability to consider the influence of different fiber types on the deflection-hardening response of HDC. A flexural toughness index in the form of energy ratio and a flexural strength coefficient in the form of strength ratio was proposed, which can effectively evaluate the flexural toughness of the HES-HDC beam during its whole loading process. This method took into account the large deformation of HDC and eliminated the influence of specimen size by using dimensionless forms.
Czasopismo
Rocznik
Tom
Strony
art. no. e36, 2024
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
autor
- School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
autor
- School of Civil Engineering, Xi’an University of Architecture & Technology, No. 13, Yanta Road, Xi’an 710055, Shaanxi, China
autor
- Sichuan Institute of Building Research, No. 55, No. 3 North Section of the First Ring Road, Jinniu District, Chengdu 610081, Sichuan, China
Bibliografia
- 1. Zhang H, Zuo Z. Continuously reinforced concrete pavements, China. Communications Press. 2011.
- 2. Zhang Z, Zhang Q, Qian S, Qian S, Li VC. Low E modulus early strength engineered cementitious composites material:development for ultra thin whitetopping overlay. Transp Res Rec.2015;2481(2481):41–7.
- 3. Lepech M, Li VC. Long term durability performance of engineered cementitious composites. Restor Build Monum.2006;12(2):119–32.
- 4. Toshiyuki K, Kabele P, Fukuyama H, Uchida Y, Suwada H, Slowik V. Strain hardening cement composites: structural design and performance: state-of-the-art report of the RILEM Technical Committee 208-HFC, SC3. Springer Science & Business Media;2013.
- 5. Lepech M, Li VC. Application of ECC for bridge deck link slabs. Mater Struct. 2009;42:1185–95.
- 6. Rokugo K. Tension tests and structural applications of strain-hardening fiber-reinforced cementitious composites. In: Fracture mechanics of concrete and concrete structures. London: Elsevier;2010. p. 1533–40.
- 7. Wang S, Li VC. High-early-strength engineered cementitious composites. ACI Mater J. 2006;103(2):97–105.
- 8. Deng H, Qian S. Utilization of local ingredients for the production of high-early-strength engineered cementitious composites. AdvMater Sci Eng. 2018. https://doi.org/10.1155/2018/8159869.
- 9. Yang J, Deng M, Zhang Q, Deng Y, Zhang Y, Fan H. Effect of fiber characteristics parameters on uniaxial tensile properties of HES-HDC and evaluation method of tensile toughness. J Hunan Univ (Nat Sci). https:// kns. cnki. net/ kcms2/ detail/ 43. 1061.N.20230630.1306.004.html.
- 10. Huo Y, Sun H, Liu T, He Y, Chen Z, Lü C, Yang Y. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites. Acta Materiae Compositae Sinica.2022;39(11):5086–97 (In Chinese).
- 11. Zhang Z, Zhang Q. Matrix tailoring of engineered cementitious composites (ECC) with non-oil-coated, low tensile strength PVA fiber. Constr Build Mater. 2018;161:420–31.
- 12. Zhang D, Yu J, Wu H, Jaworska B, Ellis B, Li VC. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC). Compos Part B Eng. 2020;184:107741.
- 13. Ma H, Qian S, Zhang Z, Lin Z, Li VC. Tailoring engineered cementitious composites with local ingredients. Constr Build Mater. 2015;101:584–95.
- 14. JSCE-SF4. Method of tests for flexural strength and flexural toughness of steel fiber reinforced concrete. Japan Society of Civil Engineering; 1984.
- 15. ASTM C1018. Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam withthird-point loading). ASTM International; 1997.
- 16. ASTM C1609/C1609M-19. Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken: ASTM Internation; 2019.
- 17. CECS 13: 2009. Standard test methods for fiber reinforced concrete. China Association for Engineering Construction Standardization; 2009.
- 18. JG/T 472-2015. Steel fiber reinforced concrete. Beijing: Ministryof Housing and Urban–Rural Development of China; 2015.
- 19. Li H, Xu S. Research on flexural properties and flexural toughness evaluation method of ultra high toughness cementitious composites. China Civ Eng J. 2010;43(3):32–9.
- 20. Mindess S, Chen L, Morgan DR. Determination of the first-crackstrength and flexural toughness of steel fiber-reinforced concrete. Adv Cem Based Mater. 1994;1(5):201–8.
- 21. Zhu D, Tang A, Wan C, Zeng Y, Wang Z. Investigation on the flexural toughness evaluation method and surface cracks fractal characteristics of polypropylene fiber reinforced cement-based composites. J Build Eng. 2021;43: 103045.
- 22. Zhang Y, Zhang S, Deng M. Four-point bending tests of ECC:mechanical response and toughness evaluation. Case Stud Constr Mater. 2022;17: e01573.
- 23. Banthia N, Trottier JF. Test methods for fexural toughness characterization of fiber reinforced concrete: some concerns and a proposition. Acids Mater J. 1995;92(1):48–57.
- 24. GB 175-2007. Common portland cement. Standards Press of China; 2007.
- 25. GB 20472-2006. Sulphoaluminate cement. Standards Press of China; 2006.
- 26. Li VC. Engineered cementitious composites (ECC): bendable concrete for sustainable and resilient infrastructure. Berlin: Springer;2019.
- 27. Li VC, Leung C. Steady-state and multiple cracking of short random fiber composites. J Eng Mech. 1992;118(11):2246–64.
- 28. Lepech M, Li VC. Preliminary findings on size effect in ECC structural members in flexure. Brittle Matrix Compos.2003;7:57–66.
- 29. Kanakubo T, Shimizu K, Kanda T. Size effect on flexural andshear behavior of PVA-ECC, structures under extreme loading. In: Proceedings of protect 2007; 2007.
- 30. DBJ 60/T 112-2021. Technical specification for application of high ductile concrete. Ministry of Housing and Urban–Rural Development of Shaanxi, China; 2021.
- 31. GB/T 1346-2011. Test methods for water requirement of normal consistency, setting time and soundness of the portland cements. Standardization Administration of China; 2011.
- 32. JT/T 1211.1-2018. Rapid repairing material of cement concrete for highway engineering—Part 1: cementitious repairing material. Ministry of Transport of the People’s Republic of China; 2018.
- 33. GB/T 2419-2005. Test method for fluidity of cement mortar. Standards Press of China; 2005.
- 34. JC/T 2461-2018. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites. China Building Materials Press; 2018.
- 35. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks. Japan Society of Civil Engineers; 2008.
- 36. Kanda T, Li VC. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix. J Mater Civ Eng.1998;10(1):5–13.
- 37. Wang S, Liu S, Zhou R, Zhang Y, Zhang H. Preparation and hardening performance of ultra-light sulphoaluminate cement-based foaming material. Bull Chin Ceramic Soc. 2021;40(3):723–30 (In Chinese).
- 38. Lu C, Yuan Z, Yang C, Hou D, Yao Y. Tensile properties of PVA and PE fiber reinforced engineered cementitious composites containing coarse silica sand. J Build Eng. 2023;75: 106913.
- 39. GB 50011-2010. Code for seismic design of buildings. Ministry of Housing and Urban–Rural Development of the People’s Republic of China, Beijing, China; 2010.
- 40. Zhang Y, Yang J, Li T, Deng M. Mechanical behavior of RC columns strengthened with thin UHPC jacket under cyclic loads.J Build Eng. 2022;49: 104065.
- 41. JTG D40-2011. Specifications for design of highway cement concrete pavement. Beijing: China Communications Press; 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-513c3cef-dbbb-4d0c-9fc4-9c3db810e88e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.