PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cooperation of a PEM fuel cell and a NiMH battery at various states of its charge in a FCHEV drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of electromobility is focused on the design and implementation of increasingly more effective electric drives. In such a system, apart from energy recovery, it is not possible to recharge the batteries while driving. Electric vehicles equipped with fuel cells and a battery (FCHEV – fuel cell hybrid electric vehicle) in a parallel configuration boast increased energy transfer capabilities. The article presents an energy flow analysis in a parallel hybrid drive system with fuel cells and a battery. The research was carried out on a 30 W vehicle made in 1:10 scale with a NiMH battery and a fuel cell with a proton exchange membrane (PEM). Increasing driving dynamics causes a 29% increase in energy consumption, 43.6% reduction of energy transfer from a fuel cell and a 23% increase of in the energy share intended for battery charging. Continuous operation of the system in full power mode ensures a much greater efficiency of energy transmission to the drive train (95%) compared to the system operating in dynamic driving conditions – 64–75%.
Rocznik
Strony
468--475
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • 1. Affam A, Buswig Y M, Bin Hj Othman A K, Julai N B, Qays O. A review of multiple input DC-DC converter topologies linked with hybrid electric vehicles and renewable energy systems. Renewable and Sustainable Energy Reviews 2021; 135: 110186, https://doi.org/10.1016/j.rser.2020.110186.
  • 2. Akinyele D, Olabode E, Amole A. Review of fuel cell technologies and applications for sustainable microgrid systems. Inventions 2020; 5 (3): 42, https://doi.org/10.3390/inventions5030042.
  • 3. Ali M S, Kamarudin S K, Masdar M S, Mohamed A. An overview of power electronics applications in fuel cell systems: DC and AC converters. The Scientific World Journal 2014; 103709, https://doi.org/10.1155/2014/103709.
  • 4. Balcı Ö, Karagöz Y, Kale S, Damar S, Attar A, Köten H, Dalkılıç A S, Wongwises S. Fuel consumption and emission comparison of conventional and hydrogen feed vehicles. International Journal of Hydrogen Energy 2020; https://doi.org/10.1016/j.ijhydene.2020.11.095.
  • 5. Bauman J, Kazerani M. A comparative study of fuel-cell-battery, fuel-cell-ultracapacitor, and fuel-cell-battery-ultracapacitor vehicles. IEEE Transactions on Vehicular Technology 2008; 57 (2): 760-769, https://doi.org/10.1109/TVT.2007.906379.
  • 6. Bhatt M D, Lee J Y. High capacity conversion anodes in Li-ion batteries: A review. International Journal of Hydrogen Energy 2019; 44 (21):10852-10905, https://doi.org/10.1016/j.ijhydene.2019.02.015.
  • 7. Borucka A, Wiśniowski P, Mazurkiewicz D, Świderski A. Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic. Measurement 2021; 174: 108998, https://doi.org/10.1016/j.measurement.2021.108998.
  • 8. Brzeżański M, Rodak Ł. Investigation of a new concept of hydrogen supply for a spark-ignition engine. Combustion Engines 2019; 178 (3):140-143, https://doi.org/10.19206/CE-2019-324.
  • 9. Changizian S, Ahmadi P, Raeesi M, Janavi N. Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles. International Journal of Hydrogen Energy 2020; 45 (60): 35180-35197, https://doi.org/10.1016/j.ijhydene.2020.01.015.
  • 10. Chen K, Laghrouche S, Djerdir A. Performance analysis of PEM fuel cell in mobile application under real traffic and environmental conditions. Energy Conversion and Management 2021; 227: 113602, https://doi.org/10.1016/j.enconman.2020.113602.
  • 11. Dimitriou P, Tsujimura T. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy 2017; 42 (38): 24470-24486, https://doi.org/10.1016/j.ijhydene.2017.07.232.
  • 12. Farhani S, Barhoumi E M, Bacha F. Design and hardware investigation of a new configuration of an isolated DC-DC converter for fuel cell vehicle. Ain Shams Engineering Journal 2020; 12 (1): 591-598, https://doi.org/10.1016/j.asej.2020.07.014.
  • 13. Fayaz H, Saidur R, Razali N. An overview of hydrogen as a vehicle fuel. Renewable and Sustainable Energy Reviews 2012; 16 (8): 5511- 5528, https://doi.org/10.1016/j.rser.2012.06.012.
  • 14. Feroldi D, Serra M, Riera J. Design and analysis of fuel-cell hybrid systems oriented to automotive applications. IEEE Transactions on Vehicular Technology 2009; 58 (9): 4720-4729, https://doi.org/10.1109/TVT.2009.2027241.
  • 15. Grady P, Chen G, Verma S, Marellapudi A, Hotz N. A study of energy losses in the world's most fuel efficient vehicle. 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, IEEE: 2019: 1-6, https://doi.org/10.1109/vppc46532.2019.8952212.
  • 16. Guo F, Qin J, Ji Z, Liu H, Cheng K, Zhang S. Performance analysis of a turbofan engine integrated with solid oxide fuel cells based on Al-H2O hydrogen production for more electric long-endurance UAVs. Energy Conversion and Management 2021; 235: 113999, https://doi.org/10.1016/j.enconman.2021.113999.
  • 17. Gurz M, Baltacioglu E, Hames Y, Kaya K. The meeting of hydrogen and automotive: a review. International Journal of Hydrogen Energy 2017; 42 (36): 23334-23346, https://doi.org/10.1016/j.ijhydene.2017.02.124.
  • 18. Haseli Y. Maximum conversion efficiency of hydrogen fuel cells. International Journal of Hydrogen Energy 2018; 43 (18): 9015-9021, https://doi.org/10.1016/j.ijhydene.2018.03.076.
  • 19. Howroyd S, Chen R. Powerpath controller for fuel cell & battery hybridisation. International Journal of Hydrogen Energy 2016; 41 (7): 4229-4238, https://doi.org/10.1016/j.ijhydene.2016.01.038.
  • 20. Innocenzi V, Ippolito N M, De Michelis I, Prisciandaro M, Medici F, Vegliò F. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. Journal of Power Sources 2017; 362: 202-218, https://doi.org/10.1016/j.jpowsour.2017.07.034.
  • 21. Khayyer P, Famouri P. Application of two fuel cells in hybrid electric vehicles. SAE Paper 2008: 2008-01-2418, https://doi.org/10.4271/2008-01-2418.
  • 22. Manoharan Y, Hosseini S E, Butler B, Alzhahrani H, Senior B T F, Ashuri T, Krohn J. Hydrogen fuel cell vehicles; current status and future prospect. Applied Sciences 2019; 9 (11): 2296, https://doi.org/10.3390/app9112296.
  • 23. Pielecha I, Cieślik W, Szałek A. The use of electric drive in urban driving conditions using a hydrogen powered vehicle - Toyota Mirai. Combustion Engines 2018; 172(1): 51-58, https://doi.org/10.19206/CE-2018-106.
  • 24. Pielecha I, Pielecha J. Simulation analysis of electric vehicles energy consumption in driving tests. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (1): 130-137, https://doi.org/10.17531/ein.2020.1.15.
  • 25. Rana K, Natarajan S, Jilakara S. Potential of hydrogen fuelled IC engine to achieve the future performance and emission norms. SAE Paper 2015: 2015-26-0050, https://doi.org/10.4271/2015-26-0050.
  • 26. Shang J, Kendall K, Pollet B G. Hybrid hydrogen PEM fuel cell and batteries without DC-DC converter. International Journal of Low-Carbon Technologies 2016; 11 (2): 205-210, https://doi.org/10.1093/ijlct/ctt070.
  • 27. Sorlei I S, Bizon N, Thounthong P, Varlam M, Carcadea E, Culcer M, Iliescu M, Raceanu M. Fuel cell electric vehicles - a brief review of current topologies and energy management strategies. Energies 2021; 14: 252, https://doi.org/10.3390/en14010252.
  • 28. Szumska E, Jurecki R, Pawełczyk M. Evaluation of the use of hybrid electric powertrain system in urban traffic conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (1): 154-160, https://doi.org/10.17531/ein.2020.1.18.
  • 29. Verhelst S, Sierens R, Verstraeten S. A critical review of experimental research on hydrogen fueled SI engines. SAE Paper 2006: 2006-01- 0430, https://doi.org/10.4271/2006-01-0430.
  • 30. Yao G, Du C, Ge Q, Jiang H, Wang Y, Ait-Ahmed M, Moreau L. Traffic-condition-prediction-based HMA-FIS energy-management strategy for fuel-cell electric vehicles. Energies 2019; 12: 4426, https://doi.org/10.3390/en12234426.
  • 31. Zhang J, Zhang H, Wu J, Zhang J. PEM Fuel Cell Fundamentals. PEM Fuel Cell Testing and Diagnosis, Elsevier: 2013: 1-42, https://doi.org/10.1016/B978-0-444-53688-4.00001-2.
  • 32. Zhao Z, Wang T, Li M, Wang H, Wang Y. Optimization of fuzzy control energy management strategy for fuel cell vehicle power system using a multi-islandgenetic algorithm. Energy Science & Engineering 2021; 9: 548-564, https://doi.org/10.1002/ese3.835.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51385711-7511-4637-a893-90a564740353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.