PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental composite material modified with calcium fluoride – three-point bending flexural test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Evaluation of mechanical properties of fluoride-based experimental composite material. Design/methodology/approach: Flexural strength of experimental light-curing composite material (ECM) modified with the addition of calcium fluoride was tested. The composite material was modified with 0.5–5.0 wt% anhydrous calcium fluoride. Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Findings: Flexural strength of ECM modified with 1.5 wt% up to 5.0 wt% CaF2, stored dry, was statistically higher than in wet conditions. Research limitations/implications: The best mechanical properties of flowable experimental composite material modified with CaF2 were obtained when 1.0 wt% CaF2 was added to the composite. Fluoride-based composite materials need further studies to confirm present findings. Also, fluoride ion release and microbiological properties of CaF2modified composite materials should be evaluated. Originality/value: Fluoride-based composite materials are promising research field and would be found desirable dental restorative materials.
Rocznik
Strony
72--77
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
autor
  • Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
  • Laboratory of Material Testing, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
autor
  • Laboratory of Material Testing, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
autor
  • Laboratory of Material Testing, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
  • Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
  • Department of General Dentistry, Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland
Bibliografia
  • [1] J. Koeser, T.S. Carvalho, U. Pieles, A. Lussi, Preparation and optimization of calcium fluoride particles for dental applications, Journal of Material Science: Materials in Medicine 25 (2014) 1671-1677.
  • [2] E. Asmussen, A. Peutzfeldt, Strengthening effect of alluminum fluoride added to resin composites on based polyacid-contaning polymer, Dental Materials 19 (2003) 620-624.
  • [3] M.D. Weir, J.L. Moreau, E.D. Levine, H.D. Strassler, L.C. Chow, H.H.K. Xu, Nanocomposite containing CaF(2) nanoparticles: Thermal cycling, wear and long-term water-aging, Dental Materials 28/6 (2012) 642-652.
  • [4] L.D. Carvalho, G.C. Lopes, N. Sartori, S.C. Stolf, S. B. Silva, M.M. Becker, G.M. Arcari, Influence of chlorhexidine digluconate on clinical performance of cervical restoration, Dental Materials 27 Suppl 1 (2011) e29.
  • [5] I.S. Medeiros, M.N. Gomes, A.D. Loguercio, L.E. Filho, Diametral tensile strength and Vickers hardness of a composite after storage in different solutions, Journal of Oral Science 49/1 (2007) 61-66.
  • [6] D. Browne, H. Whelton, D. O’Mullane, Fluoride metabolism and fluorosis, Journal of Dentistry 33/3 (2005) 177-186.
  • [7] J.M. Ten Cate, J.D. Featherstone, Mechanistic aspects of the interaction between fluoride and dental enamel, Critical Review in Oral Biology and Medicine 2/3 (1991) 283-296.
  • [8] D. Cummins, The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries, Journal of Dentistry 41/2 (2013) 1-11.
  • [9] H.B. Davis, F. Gwinner, J.C. Mitchell, J.L. Ferracane, Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass, Dental Materials 30/10 (2014) 1187-1194
  • [10] PN-EN ISO 4049:2010
  • [11] ANSI/ADA specification No. 69. Dental ceramic. American National Standards Institute/American Dental Association, Council on Dental Materials, Instruments and Equipment. Chicago (1992) 1-18.
  • [12] H.B. Davis, F. Gwinner, J.C. Mitchell, J.L. Ferracane, Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass, Dental Materials 30/10 (2014) 1187-1194.
  • [13] H.H.K. Xu, J.L. Moreau, L. Sun, L.C. Chow, Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite, Biomaterials 29/32 (2008) 4261-4267.
  • [14] J. Arends, G.E. Dijkman, A.E. Dijkman, Review of fluoriderelease and secondary caries reduction by fluoridatingcomposites, Advantages in Dental Research 9 (1995) 367-376.
  • [15] E. A. Glasspoole, R.L. Erickson, C.L. Davidson, A fluoride-releasing composite for dental applications, Dental Material 17/2 (2001) 127-133.
  • [16] J.M Powers, R.L. Sakaguchi, Craig’s Restorative Dentals Materials, 13th Edition, Mosby Elsevier, 2012.
  • [17] H.H.K Xu, J.L. Moreau, L. Sun, L.C. Chow, Novel CaF2 Nanocomposite with high strenght and fluoride ion release, Journal of Dental Research 89/7 (2010) 739-745.
  • [18] X. Hu, P.M. Marquis, A.C. Schortall, Influence of filler loading on the two-body wear of a dental composite, Journal of Oral Rehabilitation 30/7 (2003) 729-737.
  • [19] E. Bresciani, T. de Jesus Esteves Barata, T.C. Fagundes, A. Adachi, M.M. Terrin, M.F. de Lima Navarro, Compressive and diametral tensile strength of glass jonomer cements, Journal of Applied Oral Science 12/4 (2004) 344-348.
  • [20] E. Asmussen, A. Peutzfeldt, Long-term fluoride release from a glass ionomer cement, a compomer and from experimental resin composite, Acta Odontologica Scandinavica 60 (2002) 93-97.
  • [21] X. Xu, L. Ling, R. Wang, J.O. Burgess, Formulation and characterization of a novel fluoride-releasing dental composite, Dental Materials 22/11 (2006) 1014-1023.
  • [22] R.I. Galvan, F.J. Robertello, T.A. Lynde, In vitro comparison of fluoride release of six direct core materials, Journal of Prosthetic Dentistry 83 (2000) 629-633.
  • [23] M.D. Weir, J.L. Moreau, E.D. Levine, H.D. Strassler, L.C Chow, H.H.K. Xu, Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and longterm water-aging, Dental Materials 28/6 (2012) 624-652.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51327395-a8f1-4e24-b98d-750e2dd6a16a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.