Identyfikatory
Warianty tytułu
Metodologia opartego na fizyce modelowania wielorakich konfiguracji łożysk tocznych
Języki publikacji
Abstrakty
Condition-based maintenance is an extended maintenance approach for many systems, including rolling element bearings. For that purpose, the physics-based modelling of these machine elements is an interesting method. The use of rolling element bearings is extended to many fields, what implies a variety of the configurations that they can take regarding the kind of rolling elements, the internal configuration and the number of rows. Moreover, the differences of the applications make rolling element bearings to take different sizes and to be operating at different conditions regarding both speed and loads. In this work, a methodology to create a physics-based mathematical model to reproduce the dynamics of multiple kinds of rolling element bearings is presented. Following a multi-body modelling, the proposed strategy takes advantage of the reusability of models to cover a wide range of bearing configurations, as well as to generalise the dimensioning of the bearing and the application of the operating conditions. Simulations of two bearing configurations are presented in this paper, analysing their dynamic response as well as analysing the effects of damage in their parts. Results of the two case studies show good agreement with experimental data and results of other models in literature.
Utrzymanie ruchu zależne od stanu technicznego urządzenia to rozszerzone podejście do eksploatacji mające zastosowanie do wielu układów, w tym łożysk tocznych. Ciekawą metodą modelowania tych elementów jest modelowanie oparte na fizyce. Łożyska toczne wykorzystywane są szeroko w wielu dziedzinach, co oznacza, że elementy toczne mogą występować w wielorakich konfiguracjach różniących się rodzajem elementów tocznych, ich wewnętrznym układem oraz liczbą rzędów. Co więcej, różnice dotyczące zastosowań sprawiają, że łożyska toczne mogą przybierać różne rozmiary i działać w różnych warunkach prędkości i obciążeń. W niniejszej pracy zaprezentowano metodologię tworzenia modelu matematycznego opartego na fizyce służącego do odtwarzania dynamiki wielu rodzajów łożysk tocznych. Zgodnie z zasadami modelowania układów wieloczłonowych, proponowana strategia wykorzystuje możliwość ponownego użycia modeli do zamodelowania szerokiego zakresu konfiguracji łożysk, a także uogólnienia wymiarowania łożyska oraz ujęcia warunków jego pracy. W opracowaniu przedstawiono symulacje dwóch konfiguracji elementów tocznych wraz z analizą ich dynamicznej odpowiedzi oraz analizą skutków uszkodzenia ich części. Wyniki dwóch przedstawionych w pracy studiów przypadków wykazują dobrą zgodność z danymi doświadczalnymi oraz wynikami innych modeli opisanymi w literaturze.
Czasopismo
Rocznik
Tom
Strony
638--648
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- IK4-Ikerlan Technology Research Centre / Luleå University of Technology Control and Monitoring Area / Division of Operation and Maintenance Engineering Pº J. M. Arizmendiarrieta, 2. 20500 Arrasate-Mondragón, Spain / 971 82 Luleå, Sweden
autor
- IK4-Ikerlan Technology Research Centre Control and Monitoring Area Pº J. M. Arizmendiarrieta, 2. 20500 Arrasate-Mondragón, Spain
autor
- Luleå University of Technology Division of Operation and Maintenance Engineering 971 82 Luleå, Sweden
Bibliografia
- 1. Bercea I., Cretu S., Nélias D. - Analysis of double-row tapered roller bearings, Part I - Model. Tribology Transactions 2003; 46(2): 228-239, http://dx.doi.org/10.1080/10402000308982622.
- 2. Bolander N., Qiu H., Eklund N., Hindle E., Rosenfeld T. - Physics-based remaining useful life prediction for aircraft engine bearing prognosis. Annual Conference of the Prognostics and Health Management Society 2009; San Diego, USA.
- 3. Cao M., Xiao J.- A comprehensive dynamic model of double-row spherical roller bearing - Model development and case studies on surface defects, preloads, and radial clearance. Mechanical Systems and Signal Processing 2008; 22(2): 467-489, http://dx.doi.org/10.1016/j.ymssp.2007.07.007.
- 4. Changqing B., Qingyu X. - Dynamic model of ball bearings with internal clearance and waviness. Journal of Sound and Vibration 2006; 294(1-2): 23-48, http://dx.doi.org/10.1016/j.jsv.2005.10.005.
- 5. Cui L., Zheng J. - Nonlinear vibration and stability analysis of a flexible rotor supported on angular contact ball bearings. Journal of Vibration and Control 2014; 20(12): 1767-1782, http://dx.doi.org/10.1177/1077546312474679.
- 6. Dragomir O. E., Gouriveau R., Dragomir F., Minca E., Zerhouni N. - Review of prognostic problem in condition-based maintenance. Proceedings of European Control Conference 2009; Budapest, Hungary.
- 7. Flores P., Ambrósio J., Pimenta Claro J. C., Lankarani H. M. - Kinematics and dynamics of multibody systems with imperfect joints. Springer Berlin Heidelberg, 2008.
- 8. Fritzson P. - Introduction to modeling and simulation of technical and physical systems with Modelica. Wiley-IEEE Press, 2011, http://dx.doi.org/10.1002/9781118094259.
- 9. Galar D., Thaduri A., Catelani M., Ciani L. - Context awareness for maintenance decision making: A diagnosis and prognosis approach. Measurement 2015; 67: 137-150, http://dx.doi.org/10.1016/j.measurement.2015.01.015.
- 10. Gupta P. K. - Advanced dynamics of rolling elements. 1st Edition, Springer New York, 1984, http://dx.doi.org/10.1007/978-1-4612-5276-4.
- 11. Hamrock B. J., Dowson D. - Isothermal elastohydrodynamic lubrication of point contacts: Part III - Fully flooded results. Journal of Lubrication Technology 1977; 99(2): 264-275, http://dx.doi.org/10.1115/1.3453074.
- 12. Harris T. A., Kotzalas M. N. - Essential concepts of bearing technology, 5th Edition, Rolling bearing analysis. New York: Taylor & Francis, 2006.
- 13. Harsha S. P. - Nonlinear dynamic analysis of rolling element bearings due to cage run-out and number of balls. Journal of Sound and Vibration 2006; 289(1-2): 360-381, http://dx.doi.org/10.1016/j.jsv.2005.02.021.
- 14. Heng A., Zhang S., Tan A. C., Mathew J. - Rotating machinery prognostics: State of the art, challenges and opportunities. Mechanical Systems and Signal Processing 2009; 23(3): 724-739, http://dx.doi.org/10.1016/j.ymssp.2008.06.009.
- 15. Jain S., Hunt H. - A dynamic model to predict the occurrence of skidding in wind-turbine bearings. Journal of Physics: Conference Series 2011; 305(1): 012027, http://dx.doi.org/10.1088/1742-6596/305/1/012027.
- 16. Jardine A. K. S., Lin D., Banjevic D. - A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing 2006; 20(7): 1483-1510, http://dx.doi.org/10.1016/j.ymssp.2005.09.012.
- 17. Kabus S., Hansen M. R., Mouritsen O. O. - A new quasi-static multi-degree of freedom tapered roller bearing model to accurately consider non-hertzian contact pressures in time-domain simulations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics 2014; 228(2): 111-125, http://dx.doi.org/10.1177/1464419313513446.
- 18. Kappaganthu K., Nataraj C. - Nonlinear modeling and analysis of a rolling element bearing with a clearance. Communications in Nonlinear Science and Numerical Simulation 2011; 16(10): 4134-4145, http://dx.doi.org/10.1016/j.cnsns.2011.02.001.
- 19. Kiral Z., Karagülle H. - Simulation and analysis of vibration signals generated by rolling element bearing with defects. Tribology International 2003; 36(9): 667-678, http://dx.doi.org/10.1016/S0301-679X(03)00010-0.
- 20. Kogan G., Klein R., Kushnirsky A., Bortman J. - Toward a 3D dynamic model of a faulty duplex ball bearing. Mechanical Systems and Signal Processing 2015; 54-55: 243-258, http://dx.doi.org/10.1016/j.ymssp.2014.07.020.
- 21. Kulkarni P., Sahasrabudhe A. - A dynamic model of ball bearing for simulating localized defects on outer race using cubic hermite spline. Journal of Mechanical Science and Technology 2014; 28(9): 3433-3442, http://dx.doi.org/10.1007/s12206-014-0804-0.
- 22. Leblanc A., Nelias D., Defaye C. - Nonlinear dynamic analysis of cylindrical roller bearing with flexible rings. Journal of Sound and Vibration 2009; 325(1-2): 145-160, http://dx.doi.org/10.1016/j.jsv.2009.03.013.
- 23. Liu J., Shao Y., Zuo M. J. - The effects of the shape of localized defect in ball bearings on the vibration waveform. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2013; 227(3): 261-274, http://dx.doi.org/10.1177/1464419313486102.
- 24. Meeks C. R., Tran L. - Ball bearing dynamic analysis using computer methods - Part I: Analysis. Journal of Tribology 1996; 118(1): 52-58, http://dx.doi.org/10.1115/1.2837092.
- 25. Mishra M., Leturiondo U., Salgado O., Galar D. - Hybrid modelling for failure diagnosis and prognosis in the transport sector. Acquired data and synthetic data. Dyna 2015; 90(2): 139-145, http://dx.doi.org/10.6036/7252.
- 26. Niu L., Cao H., He Z., Li Y. - Dynamic modeling and vibration response simulation for high speed rolling ball bearings with localized surface defects in raceways. Journal of Manufacturing Science and Engineering 2014; 136(4): 041015, http://dx.doi.org/10.1115/1.4027334.
- 27. Pandya D. H., Upadhyay S. H., Harsha S. P. - Nonlinear dynamic analysis of high speed bearings due to combined localized defects. Journal of Vibration and Control 2014; 20(15): 2300-2313, http://dx.doi.org/10.1177/1077546313483790.
- 28. Patel U. A., Upadhyay S. H. - Theoretical model to predict the effect of localized defect on dynamic behavior of cylindrical roller bearing at inner race and outer race. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2014; 228(2): 152-171, http://dx.doi.org/10.1177/1464419313519612.
- 29. Patil M. S., Mathew J., Rajendrakumar P. K., Desai S. - A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. International Journal of Mechanical Sciences 2010; 52(9): 1193-1201. Special Issue on Advances in Materials and Processing Technologies, http://dx.doi.org/10.1016/j.ijmecsci.2010.05.005.
- 30. Purohit R. K., Purohit K. - Dynamic analysis of ball bearings with effect of preload and number of balls. International Journal of Applied Mechanics and Engineering 2006; 11(1): 77-91.
- 31. Qiu J., Seth B. B., Liang S. Y., Zhang C. - Damage mechanics approach for bearing lifetime prognostics. Mechanical Systems and Signal Processing 2002; 16(5): 817-829, http://dx.doi.org/10.1006/mssp.2002.1483.
- 32. Rafsanjani A., Abbasion S., Farshidianfar A., Moeenfard H. - Nonlinear dynamic modeling of surface defects in rolling element bearing systems. Journal of Sound and Vibration 2009; 319(3-5): 1150-1174, http://dx.doi.org/10.1016/j.jsv.2008.06.043.
- 33. Randall R. B. - Vibration-based condition monitoring. 1st Edition, John Wiley & Sons, Ltd, 2011, http://dx.doi.org/10.1002/9780470977668.
- 34. Sawalhi N., Randall R. B. - Simulating gear and bearing interactions in the presence of faults: Part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mechanical Systems and Signal Processing 2008; 22(8): 1924-1951, http://dx.doi.org/10.1016/j.ymssp.2007.12.001.
- 35. Shabana A. A. - Dynamics of multibody systems. New York: John Wiley & Sons, 1989.
- 36. Shao Y., Liu J., Ye J. - A new method to model a localized surface defect in a cylindrical roller bearing dynamic simulation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2014; 228(2): 140-159, http://dx.doi.org/10.1177/1350650113499745.
- 37. Sikorska J. Z., Hodkiewicz M., Ma L. - Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing 2011; 25(5): 1803-1836, http://dx.doi.org/10.1016/j.ymssp.2010.11.018.
- 38. Smith W. A., Randall R. B. - Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mechanical Systems and Signal Processing 2015; 64-65: 100-131, http://dx.doi.org/10.1016/j.ymssp.2015.04.021.
- 39. Sopanen J., Mikkola A. - Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: Theory. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2003; 217(3): 201-211, http://dx.doi.org/10.1243/14644190360713551.
- 40. Spikes H. - Basics of EHL for practical application. Lubrication Science 2015; 27(1): 45-67, http://dx.doi.org/10.1002/ls.1271.
- 41. Tadina M., Boltežar M. - Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up. Journal of Sound and Vibration 2011; 330(17): 4287-4301, http://dx.doi.org/10.1016/j.jsv.2011.03.031.
- 42. Wang W-Z., Hu L., Zhang S. G., Kong L. J. - Modeling high-speed angular contact ball bearing under the combined radial, axial and moment loads. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2014; 228(5): 852-864. http://dx.doi.org/10.1177/0954406213490874
- 43. Xiangyang L., Wanqiang C. - Rolling bearing fault diagnosis based on physical model and one-class support vector machine. ISRN Mechanical Engineering 2014; Article ID 160281, http://dx.doi.org/10.1155/2014/160281.
- 44. Yuan X., Zhu Y-S., Zhang Y-Y. - Multi-body vibration modelling of ball bearing-rotor system considering single and compound multidefects. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 2014; 228(2): 199-212, http://dx.doi.org/10.1177/1464419314522372.
- 45. Zhang Y-Y., Wang X-L., Zhang X-Q., Yan X-L. - Dynamic analysis of a high-speed rotor-ball bearing system under elastohydrodynamic lubrication. Journal of Vibration and Acoustics 2014; 136(6): 061003, http://dx.doi.org/10.1115/1.4028311.
- 46. Zhuo Y., Zhou X., Yang C. - Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls. Journal of Sound and Vibration 2014; 333(23): 6170-6189, http://dx.doi.org/10.1016/j.jsv.2014.04.054.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5131ee2a-a952-4b42-a666-6f4dc25b7613