Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
GNSS station movements as an indicator of the movement of the Earth’s crust are determined by many researchers with the use of various position and trend determination methods. One of such methods is PPP method which allows the determination of a trend for the station without a correlation (direct determination of the position of each station separately). To achieve accuracy comparable with relative positioning, there is the need to use external, high precision data or models (e.g. precise satellite orbits and clocks, ionosphere and tropo sphere models, etc.) while the PPP method is applied. The main purpose of the presented research is preliminary analyses of the results of processing daily GPS observations from permanent stations with the use of the PPP method. Daily GPS observational data in RINEX format have been acquired from a total of nine selected GNSS permanent stations from the Polish ASG EUPOS and the Ukrainian UA-EUPOS/ZAKPOS systems. As external data for PPP solutions JPL products have been used. A seven year time series was created for each station.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
57--68
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Olsztyn, Poland
Bibliografia
- [1] Kowalczyk K., Bogusz J.: Application of PPP solution to determine the absolute vertical crustal movements: Case study for northeastern Europe. [in:] 10th International Conference “Environmental Engineering”: selected papers. Vilnius Gediminas Technical University, Lithuania, April 27–28, 2017, ICEE 2017. https://doi.org/10.3846/enviro.2017.207.
- [2] Whitten C.A.: Horizontal movement in the earth’s crust. Journal of Geophysical Research, vol. 65 (9), 1960, pp. 2839–2844.
- [3] Moller D., Ritter B.: Geodetic measurements and horizontal crustal movements in the rift zone of NE-Iceland. Journal of Geophysics, vol. 47 (1), 1980, pp. 110–119.
- [4] Kontny B., Bogusz J.: Models of vertical movements of the Earth crust surface in the area of Poland derived from leveling and GNSS data. Acta Geodynamica et Geomaterialia, vol. 9, no. 3 (167), 2012, pp. 331–337.
- [5] Borkowski A., Bosy J., Kontny B.: Time series analysis of EPN stations as a criterion of choice of reference stations for local geodynamic networks. Artificial Satellites, vol. 38 (1), 2003, pp.15–28.
- [6] Bogusz J., Kłos, A., Grzempowski P., Kontny B: Modelling the velocity field in a regular grid in the area of Poland on the basis of the velocities of European permanent stations. Pure and Applied Geophysics, vol. 171 (6), 2014, pp. 809–833.
- [7] Farolfi G., Del Ventisette C.: Contemporary crustal velocity field in Alpine Mediterranean area of Italy from new geodetic data. GPS Solutions, vol. 20 (4), 2016, pp. 715–722.
- [8] Rizos C., Janssen V., Roberts C., Grinter T.: Precise point positioning: is the era of differential GNSS positioning drawing to an end? Paper presented at FIG Working Week 2012. Knowing to manage the territory, protect the environment, evaluate the cultural heritage. Rome, Italy, 6–10 May 2012.
- [9] Perez J.A.S., Monico J.F.G., Chaves J.C.: Velocity field estimation using GPS precise point positioning: the South American plate case. Journal of Global Positioning Systems, vol. 2, no. 2, 2003, pp. 90–99.
- [10] Leandro R.F., Santos M.C., Langley R.B.: Analyzing GNSS data in precise point positioning software. GPS solutions, vol. 15 (1), 2011, pp. 1–13.
- [11] Savchuk S., Khoptar A.: Analysis of the tropospheric delay estimates in software package – GIPSYX based on multi‑GNSS observations. Suchasni dosyahnennya heodezychnoyi nauky ta vyrobnytstva [Сучасні досягнення геодезичної науки та виробництва], no. І (37), 2019, pp. 57–63.
- [12] Ge M., Gendt G., Rothacher M.A., Shi C., Liu J.: Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, vol. 82 (7), 2008, pp. 389–399.
- [13] Alcay S., Turgut M.: Performance Evaluation of Real‑Time Precise Point Positioning Method. IOP Conference Series: Earth and Environmental Science, vol. 95, no. 3, 2017, pp. 032023 (1–6).
- [14] Elsobeiey M., Al‑Harbi S.: Performance of real‑time Precise Point Positioning using IGS real‑time service. GPS Solutions, vol. 20 (3), 2016, pp. 565–571.
- [15] Dawidowicz K., Krzan G.: Coordinate estimation accuracy of static precise point positioning using on‑line PPP service, a case study. Acta Geodaetica et Geophysica, vol. 49 (1), 2014, pp. 37–55.
- [16] Chen J., Li H., Wu B., Zhang Y., Wang J., Hu C.: Performance of real‑time precise point positioning. Marine Geodesy, vol. 36 (1), 2013, pp. 98–108.
- [17] Kouba J., Héroux P.: Precise point positioning using IGS orbit and clock products. GPS Solutions, vol. 5 (2), 2001, pp. 12–28.
- [18] Zumberge J.F., Heflin M.B., Jefferson D.C., Watkins M.M., Webb F.H.: Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, vol. 102 (B3), 1997, pp. 5005–5017.
- [19] Kouba J.: A guide to using International GNSS Service (IGS) products. 2009.
- [20] Villiger A., Dach R.: International GNSS Service: Technical Report. 2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51312da6-6ade-4641-ab86-3e53e92135bf