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Abstract
The paper presents possibilities of using fractional calculus in dynamic measurements used in telematic equipment 
in cars and railway vehicles diagnostic systems. It describes a laboratory measurement system for investigating 
dynamic properties of accelerometers. Tests are executed in the MATLAB&Simulink programme. Properties of 
the examined transducers of integral and quasi-fractional-orders are compared. The authors indicate the fractional 
calculus advantages from the point of view of their dynamics description.
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1. Introduction
Dynamic development of recent research into the use of 

fractional calculus for the dynamic system analysis encouraged  
authors of this paper to attempt the use of it for the analysis and 
modelling of measuring transducers and measurement systems 
used in telematic equipment [2], [3], [9] and [12].

The work’s main objective is an implementation of a fractional 
calculus-based method allows for a description of dynamic properties 
of signal processing of measuring transducers with integer-order and 
quasi-fractional-order [1], [4], [5], [6], [7], [8], [10] and [11].

Measuring transducers used in transportation facilities, especially 
telematic equipment in cars and railway vehicles diagnostic systems – 
accelerometers [10], [11] are tested, treated as a representative group 
of measuring transducers. In the classic notation, accelerometers are 
described with second-order differential equations, like many other 
groups of measuring transducers, such as: RLC circuits, mechanical 
vibrating systems, displacement measurement sensors, systems 
including tensometric and piezoelectric transducers. In addition, 

linear transducers of higher than second orders, when in transitional 
states, behave in ways similar to second-order linear transducers. 

The tested 2nd-order accelerometers were a point of reference 
for the modelled transducers of quasi-fractional-orders.

2. Model of the 2nd order 
measuring transducer

A measuring transducer comprising three types of elements 
characteristic for linear systems, i.e.: elements storing kinetic energy, 
elements storing potential energy and elements causing energy losses, 
are referred to as second-order measuring transducers [4], [7], [8]. 
Simulation and laboratory testing of a second-order measuring 
transducer - accelerometer has been tested in this paper, treated as a 
representative group of measuring transducers (Fig. 1.). 

A differential equation describing the absolute motion of a second-
order measuring transducer’s seismic mass can be expressed as:
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Fig. 1. Kinetic diagram of an accelerometer [4], [6], [11] 

Where: m – seismic mass, ks – spring constant, Bt – damping 
coefficient, x – object motion relative to a fixed system of 
coordinates, y – motion of a vibrating mass relative to a fixed 
system of coordinates, w – motion of a vibrating mass relative to 
a vibrating object. 

Considering the motion of the vibrating mass relative to the 
vibrating object (Fig. 1):

    (2)

Depending on selection of ks, m and Bt, a transducer can serve 
to measure displacements as a vibrometer assuming low ks and 
a Bt, and high m (Fig.  2b), or acceleration as an accelerometer 
assuming a high ks, low m and  Bt (Fig. 2a). 

In practical vibration measurements used in cars and railway 
vehicles diagnostic systems, acceleration-measuring transducers, 
the so-called accelerometers, are employed.  For purposes of 
simulation testing, a measuring transducer was assumed of a 
frequency f=350Hz, that is, circular frequency of free vibrations 

s
rad22000 =ω  and degree of damping ζ=0.2. Dynamics of such 

a transducer, characterised by means of a 2nd-order differential 
equation (2), are described by operator transmittance:

Fig. 2. Graphic solution to the equation of measuring transducer’s 
seismic mass motion [10]: a) for 0ωω <<m : mω  – 
measured frequencies, 0ω  – circular frequency of free 
vibrations, y  – real mass displacements, x  – displacement 
of the housing; b) for: 0ωω >>m : mω  – measured 
frequencies, 0ω  – circular frequency of free vibrations, y  – 
real mass displacements, x  – displacement of the housing 

    (3)

Fig.  5 illustrates amplitude and phase frequency characteri-
stics of a measuring transducer with operator transmittance (3). 

3. Quasi-fractional model of the 
measuring transducer

Mathematical models describing dynamic performance of 
telematic devices (measuring devices, automation objects, sensors, 
etc.) are widely used like in different disciplines of science. Their 
task is to reproduce the real behaviour of the examined device in 
the simulation environment. They are most frequently used at early 
stages of research, prior to the real examination of the problem, 
or construction of a device as a quick tool of fast prototyping. 
They allow for simulation testing of an object’s behaviour and 
testing it under normal and extreme working conditions. In this 
way onerous and costly preliminary investigations of real objects 
that aim at early assessment of their usefulness (the method 
investigated or the object) for concrete applications are ignored. 
What is more models are also the basic tool allowing us to get 
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acquainted with mathematical or physical foundations of a given 
object or phenomenon’s performance.

Dynamic behaviour of accelerometers used in telematic equipment 
(in general – objects, sensors and measuring devices for different 
applications) is written down in a form of differential equations or 
operator transmittances. In the process of determining a model of an 
accelerometer’s (object’s) dynamic behaviour, physical phenomena 
are taken into account which result from external influences and 
specific properties of an accelerometer being an effect of their design. 
Thus, accuracy of reproducing its real dynamic behaviour is first of all 
connected with this phenomenon.

Equation (1), describing the measuring transducer, can be 
expressed as a difference equation [11]:

2011220112 −−−− ++=++ kkkkkk xaxbxbwawawa     (4)

or a matrix equation:
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Equation (5) can have the following derivative-integral expression:
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where )(n
k∆  is the discrete function’s reverse difference [9], 

defined as:
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When (7) is taken into account, (6) has the matrix expression 
below:
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On comparing responses of the measuring transducer to the 
input sinusoid signal, it was described by means of three models 
using the above method:

1.	Classic model (Fig. 3) (transfer function of measuring trans-
ducer model) described with operator transmittance (9):

    (9)

2.	Classic discrete model (discrete transfer function of measuring 
transducer model), derived from the operator transmittance mo-
del (9), described by means of discrete transmittance (10) (Fig. 3): 

    (10)

Response of a continuous object to a discrete input depends not 
only on values of this signal at a discrete moments of time but also 
on sampling time and the extrapolator used. 

3.	The quasi-fractional discrete model (discrete transfer function 
of fractional transducer model) is expressed with derivative 
integrals and described by discrete transmittance (11) (Fig. 3):

    (11)

Models’ responses were tested in the programming 
environment MATLAB&Simulink. It can be noted that the model 
described by means of the discrete transmittance (11) correctly 
reproduces values of the input signal amplitude, like the model of 
transmittance (10). It can be noted in Bode frequency diagrams 
(Fig. 5.) that the measuring transducer model determined by the 
derivative-integral method presents the dynamics of the classically 
determined model (the diagrams of the models coincide). This 
confirms that integral-order differential-integral calculus is a 
special case of differential-integral calculus of non-integral orders.

Fig. 3. Simulation diagram of the system comparing measuring 
transducer models [10]: Transfer function of measuring trans-
ducer model – transducer model of operator transmittance 
(9), Discrete transfer function of measuring transducer model 
– discrete transducer model of transmittance (10), Discrete 
transfer function of fractional transducer model – quasi-frac-
tional discrete model (11) 

Measuring transducer models (10) and (11) have only been 
subject to simulation testing and do not fully represent real models 
but the simulations indicate that the quasi-fractional model (12) 
exhibits the same dynamics as the classic model (Fig. 4). 

Fig. 4. Comparison of responses by measuring transducer models 
(10) and (11) to step functions (diagrams of the models 
overlap) [5]
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The ‘apparent’ time of stabilization of time diagrams – the time 
after which a model’s description is independent from time – for 
the quasi-fractional model is the same as for the classic model.

Fig. 5. Comparison of Bode diagrams of measuring transducer 
models (10) and (11) (diagrams of the models overlap) [5]

4. Model of a laboratory system 
of acceleration measuring 
transducer

an overview of the measurement system is shown in Fig.6.:

Fig. 6. Laboratory measurement system for testing of mechanical 
vibration transducers [10]: 1 – conditioner, 2 – generator, 3 – 
amplifier, 4 – measurement card μDAQ USB-26A16, 5 – induc-
tor, 6, 7 – model and tested measuring transducers, 8 – oscil-
loscope, 9  computer/MATLAB&Simulink

In order to determine measuring transducer’s operator 
transmittance, a system comprising two accelerometers (6), (7), 
conditioner (1) and μDAQ USB-26A16 measurement card (3) 
was modelled. Accelerometer (7) DeltaTron by Bruel&Kjaer 
type 4507, sensitivity 10.18mV/ms-2 and the range of frequency 
measurements from 0.4Hz to 6kHz was tested. The conditioner’s 
operating range was between 1Hz and 20kHz. The transducer 
was mounted on an electrodynamic inductor (5). A model 
accelerometer (6) by VEB Metra, type KB12, sensitivity 317mV/
ms-2 was aligned with the tested transducer.

The operator transmittance (12) describing dynamics of the 
measurement system was determined by identification with an 
external ARX (AutoRegressive with EXternal input) [4], [7] and 
[10]. The voltage signal from the end of the tested measurement 

track is the identified signal, signal from the model accelerometer 
in response to the generator’s sinusoid function (2) of 100Hz is the 
comparative signal. 

The ARX identification method [6], [7] produced the operator 
transmittance G(s) describing the system’s dynamics:

1.	Classic model:

    (12)

2.	Discrete transfer function of the model was determined on the 
basis of the operator transmittance (12):          

    (13)

The classic discrete model (13) was produced by discretising the 
classic model (12) by means of the ‘Zero-Order-Hold’ method 
with the sampling time Tp=10-4s, for which Nyquist theorem of 
sampling frequency selection obtains.

3.	Discrete transfer function of fractional models was determined 
with a method implemented in MATLAB&Simulink. For vary-
ing increment of h, quasi-fractional transducer models become 
discrete transmittances which is presenting in Table 1.: 

Table 1. Discrete transmittances of measuring transducer models 
for varying increment h [10]

The model of the real measurement system in the form of 
discrete transmittance and models expressed by means of a 
differential-integral equation were then compared. Both types 
of the models were based on the classic model derived by ARX 
identification method (Fig. 7). The simulations were carried out 
by ode3 integration method for a 100Hz sinusoid input signal.        
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Fig. 7. Simulation diagram of the system comparing measuring 
transducer models (models from Table 1) [10]

Fig. 8 shows logarithm frequency amplitude and phase diagrams 
of the measurement system models. It can be observed that, for the 
adopted increment of h, measure of differentiation accuracy, the 
diagrams clearly diverge. This means that other h increments, far 
lower than the sampling frequency, must be adopted.

Fig. 8. Bode frequency diagrams of measuring transducer models of 
transmittance (models from Table 1) [10], [11]

5. Conclusion
The comparison of classic and quasi-fractional models’ 

responses to the step function implies the time after which 
diagrams stabilise for quasi-fractional models is the same as for 
the classic model. The same applies to frequency diagrams for 
quasi-fractional discrete models, which have the same course 
in the tested frequency ranges as the classic models (Fig. 4 and 
Fig. 5). This means that non-integral order differential-integral 

calculus is a generalisation of integral-order differential calculus – 
this is confirmed by laboratory testing of dynamic systems. 

Application of the quasi-fractional method of describing 
dynamic properties of measuring transducers discussed in this 
paper, based on non-integral-order differential calculus, will help 
to undertake analyses of simulated dynamics of various objects and 
processes in telematic problems which, due to their complexity, 
must be described by means of differential equations of any orders.
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