PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected methods for improving operating conditionsof three-phase systems working in the presenceof current and voltage deformation – part II

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper includes a summary of long-time research conducted by a research team in the Institute of Electrical Engineering and Computer Science at Silesian University of Technology. The research work has principally been related to selected problems in the field of analysis and synthesis of systems aimed at symmetrisation and improvement of some power quality parameters. This paper constitutes the second part of the report on the research. It has been devoted to three-phase system symmetrisation as well as effective elimination of higher harmonics and substantial improvement of power quality by means of hybrid active power filters.
Rocznik
Strony
603–--616
Opis fizyczny
Bibliogr. 57 poz., rys., wz.
Twórcy
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice
autor
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice
  • Institute of Electrical Engineering and Computer Science, Silesian University of Technology ul. Akademicka 10, 44-100 Gliwice
Bibliografia
  • [1] Klinger G., L-C Kompensation and Symmetrierung fur Mehrphasesysteme mit beliebigen Spannugsverlauf, ETZ Archiv, no. 2, pp. 57–61 (1979).
  • [2] Szidłowskij A.K., Kuzniecov V.G., Povyszenije kaczestva energiji v elektriczeskich setiach, Naukova Dumka, Kijev (1985).
  • [3] Hanzelka Z., The use of static compensators for symmetrisation of compensation of asymmetrical electric energy receivers, Conference materials: The quality of electricity (in Polish), Łódź, Poland, pp. 449–466 (1987).
  • [4] Kowalski Z., Asymmetry in electrical power systems, PWN (in Polish), Warszawa (1987).
  • [5] Nedeljkovic D., Nastran J., Ambrozic V., Symmetrisation of line currents in three-phase four-wire loads, ISIE’99 Proceedings of the IEEE International Symposium on Industrial Electronics, Bled, Slovenia, vol. 2, pp. 849–852 (1999).
  • [6] Kurbiel A., Hanzelka Z., Supply network current symmetrisation - a graphical approach, 5th international conference Electrical Power Quality and Utilisation EPQU ’99, Kraków, Poland, pp. 405–411 (1999).
  • [7] Strzelecki R., Supronowicz H., Power factor in AC power systems and methods for its improvement, Warsaw University of Technology Publishing House (in Polish), Warszawa (2000).
  • [8] Czarnecki L.S., Minimization of unbalanced and reactive currents in three-phase asymmetrical circuits with nonsinusoidal voltage, IEEE Proc. Part B, vol. 139, no. 4, pp. 347–354 (1992).
  • [9] Pasko M., Selection of compensators optimizing working conditions of single-phase and multi-phase voltage sources with deformed periodic waveforms, (habilitation monograph), Silesian University of Technology Science Notebooks (in Polish), Elektryka z. 135, Gliwice (1994).
  • [10] Lee S.-Y.,Wu C.-J., Combined compensation structure of a static VAr compensator and an active filter for unbalanced three-phase distribution feeders with harmonic distortion, Electric Power Systems Research, vol. 46, no. 3, pp. 243–250 (1998).
  • [11] Pasko M., Dębowski K., Symmetrisation of three-phase and multi-phase systems supplied from sources of periodic nonsinusoidal waveforms, Publisher of the Silesian University of Technology (in Polish), Gliwice (2002).
  • [12] Dębowski K., Pasko M., Symmetrisation of N-phase N-wire systems with a load connected to a generalized triangle supplied from non-ideal sources of periodical nonsinusoidal waveforms, Przegląd Elektrotechniczny (in Polish), no. 6, pp. 585–588 (2004).
  • [13] Dębowski K., Pasko M., Symmetrisation of asymmetrical three-phase load supplied from non-ideal periodic nonsinusoidal voltage source using simplified structure of the compensator, The International Journal For Computation and Mathematics in Electrical and Electronic Engineering,COMPEL, vol. 24, no. 2, pp. 682–694 (2005).
  • [14] Dębowski K., Pasko M., Symmetrisation of asymmetrical three-phase load supplied from asymmetrical non-ideal voltage source with periodic nonsinusoidal waveforms, Przegl˛ad Elektrotechniczny, IX Conf.-Seminar Intern. School on Nonsinusoidal Currents and Compensation ISNCC, Łagów, Poland, no. 11, pp. 248–252 (2008), IEEE DOI: 10.1109/ISNCC. 2008.4627500.
  • [15] Pasko M., Dębowski K., Symmetrisation of asymmetrical three-phase systems with periodic nonsinusoidal voltage source taking their inner impedances into consideration, Wisnik Nacjonalnego Uniwersytetu Politechnika Lwowska, no. 421, pp. 139–145 (2001).
  • [16] Hanzelka Z. The quality of electricity supply. Distrubances of the voltage RMS value, AGH Publishing House, monograph, Kraków (2013).
  • [17] Hanzelka Z., Klempka R., Passive harmonic filters. Selected issues (in Polish), Nap˛edy i Sterowanie, vol. 9, pp. 48–51 (2000).
  • [18] Klempka, R., Designing a group of single-branch filters taking into account their mutual influence, Archives of Electrical Engineering, vol. 63, no. 1, pp. 81–91 (2014).
  • [19] Takeda M., Ikeda K., Tominaga Y., Harmonic current compensation with active filter, IEEE/IAS Annual Meeting, Atlanta, USA, pp. 808–815 (1987).
  • [20] Chen Q., Chen Z., McCotmick M., The application and optimization of C-type filter in a combined harmonic power filter, Power Electronics Specialists Conference, Aachen, Germany, vol. 2, pp. 1042–1045 (2004).
  • [21] Tao Q., Liu K., Zha X.,Chen Q., The topology and control of a new hybrid power filter, 37th IEEE Power Electronics Specialists Conference, Jeju, South Korea, pp. 1–6 (2006).
  • [22] Luo A., Shuai Z., ZhuW., Shen Z.J., Combined System for Harmonic Suppression and Reactive Power Compensation, IEEE Transactions on Industrial Electronics, vol. 56, no. 2, pp. 428–428 (2009).
  • [23] Hosseini S.H., Nouri T., Sabahi M., Power quality enhancement using a new hybrid active power filter under non–ideal source and load conditions, Power & Energy Society General Meeting, Calgary, Canada, pp. 1–6 (2009).
  • [24] Luo A., Shuai Z., Zhu W., Fan R., Tu C., Development of hybrid active power filter based on the adaptive fuzzy dividing frequency control method, IEEE Trans. Power Del., vol. 24, no. 1, pp. 424–432 (2009).
  • [25] Sung J.-H., Park S., Nam, K., New hybrid parallel active filter configuration minimising active filter size, IEE Proceedings – Electric Power Applications, vol. 147, no. 2, pp. 93–98 (2000).
  • [26] Deng Y., Tong X., Jia H., A Bidirectional Control Principle of Active Tuned Hybrid Power Filter Based on the Active Reactor Using Active Techniques, IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 142–154 (2015).
  • [27] Luo A., Shuai Z., Shen Z.J., ZhuW., Xu X., Design considerations for maintaining dc–side voltage of hybrid active power filter with injection circuit, IEEE Trans. Power Electron., vol. 24, no. 1, pp. 75–84 (2009).
  • [28] Varschavsky A., Dixon J., Rotella M., Moran L., Cascaded Nine-Level Inverter for Hybrid-Series Active Power Filter, Using Industrial Controller, IEEE Trans. Industrial Electronics, vol. 57, no. 8, pp. 2761–2767 (2010).
  • [29] Asiminoaei L., Blaabjerg F., Hansen S., Detection is key – Harmonic detection methods for active power filter applications, IEEE Ind. Appl. Mag., vol. 13, pp. 22–33 (2007).
  • [30] Paredes H.K.M., Marafao F.P., da Silva L.C.P., A comparative analysis of FBD, PQ and CPT current decompositions – Part II: Three–phase four–wire systems, IEEE Bucharest PowerTech, pp. 1–6 (2009).
  • [31] Rechka S., Ngandui E., Jianhong Xu, Sicard P., A comparative study of harmonic detection algorithms for active filters and hybrid active filters, Power Electronics Specialists Conference, Cairns, Australia, vol. 1, pp. 357–363 (2002).
  • [32] Tenti P., Tedeschi E., Mattavelli P., Optimization of Hybrid Filters for Distributed Harmonic and Reactive Compensation, International Conference on Power Electronics and Drive Systems, Kuala Lumpur, Malaysia, vol. 1, pp. 292–297 (2005).
  • [33] Jiang Y., Chen Y., Neural Network Control Techniques of Hybrid Active Power Filter, Artificial Intelligence and Computational Intelligence, Shanghai, China, vol. 4, pp. 26–30 (2009).
  • [34] van Schoor G., van Wyk J.D., Shaw I.S., Training and optimization of an artificial neural network controlling a hybrid power filter, IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 546–553 (2003).
  • [35] Wenjin Dai, Taiyang Huang, Na Lin, Single–Phase Shunt Hybrid Active Power Filter Based on ANN, International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, vol. 2, pp. 40–44 (2007).
  • [36] Junling Chen,Yaohua Li, Xinjian Jiang, Dongqi Zhu, Fuzzy Proportional Repetitive Control for Current tracking of Hybrid Active Power Filter, 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, pp. 1835–1838 (2007).
  • [37] Basic D., Ramsden V.S., Muttik P.K., Hybrid filter control system with adaptive filters for selective elimination of harmonics and interharmonics, IEE Proceedings – Electric Power Applications, vol. 147, no. 4, pp. 295–303 (2000).
  • [38] Tarek M., Mekhilef S., Rahim N.A., Application of adaptive notch filter for harmonics currents estimation, Power Engineering Conference, Mandarin, Singapore, pp. 1236–1240 (2007).
  • [39] Asiminoaei L., Wiechowski W., Blaabjerg F., Krzeszowiak T., Kedra B., A New Control Structure for Hybrid Power Filter to Reduce the Inverter Power Rating, 32nd Annual Conference of IEEE Industrial Electronics, Paris, France, pp. 2712–2717 (2006).
  • [40] Jian Wu, Na He, Dianguo Xu, A 10KV shunt hybrid active filter for a power distribution system, Applied Power Electronics Conference and Exposition, Austin, USA, pp. 927–932 (2008).
  • [41] Rivas, D., Moran, L., Dixon, J., Espinoza, J., A simple control scheme for hybrid active power filter, IEEE PESC, pp. 991–996 (2000).
  • [42] Wang Dazhi, Ge Shuai, Li Jun,Wang Bo, Song Kefeng, Liu Xiaoli, Li Yiqi, Hybrid active power filter DC bus control based on double fuzzy control, Computational Intelligence and Natural Computing Proceedings (CINC), vol. 1, pp. 287–290 (2010).
  • [43] Škramlík J., Tlustý J., Valouch V., Control strategy of hybrid power filter under disturbed voltage system conditions, IEEE 25th Convention of Electrical and Electronics Engineers in Israel, Eilat, Israel, pp. 115–119 (2008).
  • [44] Valdez A.A., Escobar G., Martinez-Montejano M.F., A model–based controller for a hybrid power filter to compensate harmonic distortion in unbalanced operation, Power Electronics Specialists Conference, Rhodes, Greece, pp. 3861–3866 (2008).
  • [45] Pasko M., Buła D., Hybrid active power filters (in Polish), Przegl˛ad Elektrotechniczny, vol. 83, no. 7/8, pp. 1–5 (2007).
  • [46] Buła D., Pasko M., Sensitivity Problem of Hybrid Active Power Filter with Single Tuned Passive Filter, Przegląd Elektrotechniczny, vol. 86, no. 1, pp. 59–61 (2010).
  • [47] Buła D., Pasko M., Hybrid power filter with single tuned passive filter (in Polish), Przegląd Elektrotechniczny, vol. 85, no. 12, pp. 174–179 (2009).
  • [48] Buła D., Pasko M., Passive and Hybrid Filters under Distorted Source Condition, ACTA TECHNICA, vol. 54, no. 4, pp. 375–386 (2009).
  • [49] Buła D., Pasko M., Hybrid Power Filter with Single Tuned Passive Filter – Dynamical Properties, X International School on Nonsinusoidal Currents and Compensation, Łagów, Poland, pp. 16–19 (2010).
  • [50] Buła D., Pasko M., Dynamical properties of hybrid power filter with single tuned passive filter, Przegląd Elektrotechniczny, vol. 97, no. 1, pp. 91–95 (2011).
  • [51] Buła D., Pasko M., Stability analysis of hybrid active power filter, Bulletin of the Polish Academy of Sciences – Technical Sciences, vol. 62, no. 2, pp. 279–286 (2014).
  • [52] Buła D., Pasko M., Model of hybrid active power filter in the frequency domain, Lecture Notes in Electrical Engineering, 324, pp. 15–26 (2015).
  • [53] Srianthumrong S., Akagi H., A medium–voltage transformerless AC/DC power conversion system consisting of a diode rectifier and a shunt hybrid filter, IEEE Trans. Industry Applic., vol. 39, no. 3, pp. 874–882 (2003).
  • [54] TangtheerajaroonwongW., Hatada T.,Wada K, Akagi H., Design and performance of a transformerless shunt hybrid filter integrated into a three–phase diode rectifier, IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1882–1889 (2007).
  • [55] Akagi, H., Kondo, R., A Transformerless Hybrid Active Filter Using a Three–Level Pulse width Modulation (PWM) Converter for a Medium–Voltage Motor Drive, IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1365–1374 (2010).
  • [56] Buła D., Maciążek M., Pasko M., Hybrid active power filter with the reduced passive filter, Przegląd Elektrotechniczny (in Polish), vol. 85, no. 6, pp. 1–4 (2009).
  • [57] Jou H.-L., Wu J.-C., Chang Y.-J., Feng Y.-T., A Novel Active Power Filter for Harmonic Suppression, IEEE Trans. Power Del., vol. 20, no. 2, pp. 1507–1513 (2005).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-512d9b40-cdd2-4fca-8e00-f4a90b018015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.