PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Directionality detection of delaminations basing on analysis of CT slices using wavelet and Hough transforms-based algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykrywanie kierunkowości delaminacji na podstawie analizy przekrojów CT z zastosowaniem algorytmu opartego na transformacji falkowej i Hougha
Języki publikacji
EN
Abstrakty
EN
Growing demands for high reliability of constructions made of composite materials lead to a significant development of non-destructive testing methods of structural diagnostics. Among the most accurate and sensitive techniques used for analysis of internal defects, is the computed tomography (CT). However, since the results obtained from CT are highly precise, certain problems with their interpretation occur. The visual information about defects has isotropic character, thus it is not possible to evaluate directions of propagation of defects. The following study presents an investigation on a problem of identifying the directionality of delaminations evolution in layered composites. The tests were performed on specimens made of polymeric composites with delamination resulted from water-jet cutting. The images of cross sections of specimens were acquired by CT scanning. In the paper, the developed algorithm based on wavelet and Hough transforms as well as other methods of image processing and analysis is presented. The proposed method allows for automatic detection of directionality of delaminations and could be applied in quality control of composite components as well as non-destructive testing during their operation.
PL
Rosnące wymagania dotyczące wysokiej niezawodności konstrukcji wykonanych z materiałów kompozytowych prowadzą do znaczącego rozwoju metod badań nieniszczących przy diagnostyce strukturalnej. Jedną z najbardziej dokładnych i wrażliwych technik stosowanych do analizy defektów wewnętrznych jest tomografia komputerowa. Jednak, poza wysoką dokładnością wyników otrzymywanych tą metodą, istnieją pewne problemy z ich interpretacją. Informacja wizyjna o defektach ma charakter izotropowy, dlatego nie jest możliwa ocena kierunków propagacji defektów. Niniejsze studium przedstawia badania dotyczące problemu identyfikacji kierunkowości propagacji delaminacje w kompozytach warstwowych. Badania przeprowadzono na próbkach wykonanych z kompozytów polimerowych z delaminacją wynikającą z cięcia próbek strumieniem wody. Obrazy przekrojów próbek uzyskano z wykorzystaniem tomografii komputerowej. W niniejszym artykule przedstawiono algorytm oparty na transformacjach falkowej i Hougha oraz innych metod przetwarzania i analizy obrazów. Zaproponowana metoda pozwala na automatyczne wykrywanie kierunkowości delaminacji i mogłaby być zastosowana przy kontroli jakości elementów kompozytowych, jak i badań nieniszczących podczas ich eksploatacji.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • [1] Herman G.T, Liu H.K.: Display of threedimensional information in computed tomography, Journal of Computer Assisted Tomography, 1(1), 1977, pp. 155-160.
  • [2] Robb R.A., Hoffman E.A., Sinak L.J., Harris L.D., Ritman E.L.: High-speed threedimensional X-ray computed tomography: The dynamic spatial reconstructor, Proceedings of the IEEE 71(3), 1983, pp. 308-319.
  • [3] Hoffman E.A., Acharya R.S., Wollins J.A.: Computer-aided analysis of regional lung air content using three-dimensional computed tomographic images and multinomial models, Mathematical Modelling, 7(5-8), 1986, pp. 1099-1116.
  • [4] Tu H.K., Matheny A., Goldgof D.B., Bunke H.: Left ventricular boundary detection from spatio-temporal volumetric computed tomography images, Computerized Medical Imaging and Graphics, 19(1), 1995, pp. 27-46.
  • [5] Östman E., Persson S.: Application of X-ray Tomography in non-destructive testing of fibre reinforced plastics, Materials & Design, 9(3), 1988, pp. 142-147.
  • [6] Carlsson C.A.: Computerized tomography for non-destructive testing of materials and its efficient use, Materials & Design, 13(5), 1992, pp. 265-268.
  • [7] Tsao C.C., Hocheng H.: Computerized tomography and C-Scan for measuring delamination in the drilling of composite materials using various drills, International Journal of Machine Tools and Manufacture, 45(11), 2005, pp. 1282-1287.
  • [8] Anderson S.H., Gantzer C.J.: Determination of soil water content by X-ray computed tomography and magnetic resonance imaging, Irrigation Science, 10(1), 1989, pp. 63-71.
  • [9] Heijs A.W.J., de Lange J., Schoute J.F.T., Bouma J.: Computed tomography as a tool for non-destructive analysis of flow patterns in macroporous clay soils, Geoderma, 64(3-4), 1995, pp. 183-196.
  • [10] Pierret A., Capowiez Y., Belzunces L., Moran C.J.: 3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis, Geoderma, 106(3-4), 2002, pp. 247-271.
  • [11] de Chiffre L., Carmignato S., Kruth J.P., Schmitt R., Weckenmann A.: Industrial applications of computed tomography, CIRP Annals – Manufacturing Technology, 63(2), 2014, pp. 655-677.
  • [12] Kastner J., Plank B., Reh A., Salaberger D., Heinzl C.: Advanced X-ray tomographic methods for quantitative characterization of carbon fibre reinforced polymers, Proceedings of the 4th International Symposium on NDT in Aerospace, 2012, Augsburg, pp. 1-9.
  • [13] Barrett J.F., Keat N.: Artifacts in CT: recognition and avoidance, RadioGraphics, 24(6), 2004, pp. 1679-1691.
  • [14] Greenhalgh E.S., Rogers C., Robinson P.: Fractographic observations on delamination growth and the subsequent migration through the laminate, Composites Science and Technology, 69(14), 2009, pp. 2345-2351.
  • [15] Canturri C., Greenhalgh E.S., Pinho S.T., Ankersen J.: Delamination growth directionality and the subsequent migration processes – The key to the damage tolerance design, Composites Part A: Applied Science and Manufacturing, 54, 2013, pp. 79-87.
  • [16] Tarfaoui M., Choukri S., Neme A.: Effect of fibre orientation on mechanical properties of the laminated polymer composites subjected to out-of-plane high strain rate compressive loadings, Composites Science and Technology, 68(2), 2008, pp. 477-485.
  • [17] Wang H.W., Zhou H.W., Gui L.L., Ji H.W., Zhang X.C.: Analysis of effect of fiber orientation on Young’s modulus for unidirectional fiber reinforced composites, Composites Part B: Engineering, 56, 2014, pp. 733-739.
  • [18] Bednarcyk B.A., Aboudi J., Arnold S.M.: The effect of general statistical fiber misalignment on predicted damage initiation in composites, Composites Part B: Engineering, 66, 2014, pp. 97-108.
  • [19] Notta-Cuvier D., Lauro F., Bennani B., Balieu R.: Damage of short-fibre reinforced materials with anisotropy induced by complex fibres orientation, Mechanics of Materials, 68, 2014, pp. 193-206.
  • [20] Shen H., Nutt S., Hull D.: Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging, Composites Science and Technology, 64(13-14), 2004, pp. 2113-2120.
  • [21] Yang I.-Y., Im K.-H., Hsu D.K., Dayal V., Barnard D., Kim J.-H., Cha C.-S., Cho Y.-T., Kim D.-J.: Feasibility of fiber orientation detection of unidirectional CFRP composite laminates using one-sided pitch-catch ultrasonic technique, Composites Science and Technology, 69(13), 2009, pp. 2042-2047.
  • [22] Dierig T., Becker B., Reinhart C., Günther T.: Fiber composite material analysis in aerospace using CT data, Proceedings of the 4th International Symposium on NDT in Aerospace, Berlin, 2012, pp. 1-6.
  • [23] Qin X., Fei B.: Measuring myofiber orientations from high-frequency ultrasound images using multiscale decompositions, Physics in Medicine and Biology, 59(14), 2014, pp. 3907-3924.
  • [24] Cheng J., Deriche R., Jiang T., Shen D., Yap P.-T.: Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI, Neuroimage, 101, 2014, pp. 750-764.
  • [25] Çentigül H.E., Vidal R., Plank G., Trayanova N.: Nonlinear filtering for extracting orientation and tracing tubular structures in 2-D medical images, Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, 2008, pp. 260-263.
  • [26] Sadeghi M., Lee T.K., McLean D., Lui H., Atkins M.S.: Detection and analysis of irregular streaks in dermoscopic images of skin lesions, IEEE Transactions on Medical Imaging, 32(5), 2013, pp. 849-861.
  • [27] Rangayyan R.M., Ferrari R.J., Desautels J.E.L., Frére A.F.: Directional analysis of images with Gabor wavelets, Proceedings of the 3rd Brazilian Symposium on Computer Graphics and Image Processing, Gramado, 2000, pp. 170-177.
  • [28] Rosario H.S., Saber E., Wu W., Chandu K.: Streak detection in mottled and noisy images, Journal of Electronic Imaging, 16(4), 2007, 043005.
  • [29] Mühlich M., Aach T.: Analysis of multiple orientations, IEEE Transactions on Image Processing, 18(7), 2009, pp. 1424-1437.
  • [30] Kuang Z., Pan G., Wong K-Y.K.: Local multiple orientations estimation using kmedoids, Proceedings of the 17th IEEE International Conference on Image Processing, Hong Kong, 2010, pp. 109-112.
  • [31] Nikishkov Y., Makeev A., Seon G.: Progressive fatigue damage simulation method for composites, International Journal of Fatigue, 48, 2013, pp. 266-279.
  • [32] Nixon-Pearson O.J., Hallett S.R., Withers P.J., Rouse J.: Damage development in open-hole composite specimens in fatigue. Part 1: Experimental investigation, Composite Structures, 106, 2013, pp. 882-889.
  • [33] Nixon-Pearson O.J., Hallett S.R., Withers P.J., Kawashita L.F.: Damage development in openhole composite specimens in fatigue. Part 2: Numerical modelling, 106, 2013, pp. 890-898.
  • [34] Aymerich F., Found M.S.: Response of notched carbon/PEEK and carbon/epoxy laminates subjected to tension fatigue loading, Fatigue & Fracture of Engineering Materials & Structures, 23(8), 2000, pp. 675-683.
  • [35] Katunin A., Dańczak M., Kostka P., Automated identification and classification of internal defects in composite structures using computed tomography and 3D wavelet analysis, Archives of Civil and Mechanical Engineering, 15(2), 2015, pp. 436-448.
  • [36] Kingsbury N.: Complex wavelets for shift invariant analysis and filtering of signals, Applied and Computational Harmonic Analysis, 10(3), 2001, pp. 234-253.
  • [37] Hough P.V.C.: Method and means for recognizing complex patterns. Patent no. US3069654 A, 1962.
  • [38] Duda R.O., Hart P.E.: Use of the Hough transformation to detect lines and curves in pictures, Communications of the ACM, 15(1), 1972, pp. 11-15.
  • [39] Ballard D.H.: Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognition, 13(2), 1981, pp. 111-122.
  • [40] Ji J., Chen G., Sun L.: A novel Hough transform method for line detection by enhancing accumulator array, Pattern Recognition Letters, 32(11), 2011, pp. 1503-1510.
  • [41] Chung K.-L., Huang Y.-H., Tsai S.-R.: Orientation-based discrete Hough transform for line detection with low computational complexity, 237, 2014, pp. 430-437.
  • [42] Cha J., Cofer R.H., Kozaitis S.P.: Extended Hough transform for linear feature detection, Pattern Recognition, 39(6), 2006, pp. 1034-1043.
  • [43] Otsu N.: A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man and Cybernetics, 9(1), 1979, pp. 62-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-51261ffa-6a34-4687-be87-7bce2a2bc124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.