PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of combustion of qualified composite fuel for the transitional period in the household and communal sector in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of laboratory combustion tests of the microbriquette obtained from useless coal (grain class of < 5 mm) generated in the production of “eco-pea” (eko-groszek) coal. The briquettes of 1.5 and 2.5 cm3 were made in a roller press of crushed coal granulation down to 2 mm, mixed with a binder and/or catalytic additives and sorbents, then dried to final moisture of about 7%. The tests were carried out on a specially designed stand enabling to determine the differential curve of the weight loss of samples heated to the ignition temperature and then burnt with laminar airflow by natural chimney draft. Comparative tests were carried out with ecopea coal from the “ZG Sobieski” mine. The results indicate that composite fuels, in the form of microbriquette, ignite faster, burn at a higher temperature and leave less ash when burned than lump coal. The greater reactivity of the briquette concerning the lump coal allows for minimizing the air rate by about 10%, which also reduces the exhaust gas volume by the same amount and the stack losses. It reduces the velocity of dust lifting, which leads to the reduction of their emission.
Wydawca
Rocznik
Tom
Strony
Bibliogr. 40 poz., rys., tab.
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Institute of Innovative Technologies EMAG ul. Leopolda 31, 40-189 Katowice, Poland
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics al. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Łukasiewicz Research Network – Institute of Innovative Technologies EMAG ul. Leopolda 31, 40-189 Katowice, Poland
  • Łukasiewicz Research Network – Institute of Innovative Technologies EMAG ul. Leopolda 31, 40-189 Katowice, Poland
  • Łukasiewicz Research Network – Institute of Innovative Technologies EMAG ul. Leopolda 31, 40-189 Katowice, Poland
autor
  • Centrum Naukowo-Przemysłowe EMAG S.A. ul. Karoliny 4, 40-186 Katowice, Poland
Bibliografia
  • [1] D. Łowicki, “Landscape pattern as an indicator of urban air pollution of particulate matter in Poland”, Ecological indicators, vol. 97, pp. 17-24, 2019, DOI: 10.1016/j.ecolind.2018.09.050.
  • [2] K. Stala-Szlugaj, “Spalanie węgla kamiennego w sektorze komunalno-bytowym-wpływ na wielkość" niskiej emisji"”, Rocznik Ochrona Środowiska, vol. 13, pp. 1877-1889, 2011.
  • [3] G. Wielgosiński and J. Czerwińska, “Smog episodes in Poland”, Atmosphere, vol. 11, no. 3, p. 277, 2020, https://doi.org/10.3390/atmos11030277.
  • [4] W. Rogula-Kozłowska, K. Klejnowski, P. Rogula-Kopiec, B. Mathews, and S. Szopa, “A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland”, Bulletin of Environmental Contamination and Toxicology”, vol. 88, no. 5, pp. 722-729, 2012, DOI: 10.1007/s00128- 012-0533-y.
  • [5] https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-energii-w-gospodarstwach-domowych-w-2018-roku,12,1.html#, access 30th April 2022.
  • [6] A. Kerimray, L. Rojas-Solórzano, M. A. Torkmahalleh, P. K. Hopke, and B. P. Ó. Gallachóir, “Coal use for residential heating: patterns, health implications and lessons learned”, Energy for Sustainable Development, vol. 40, pp. 19-30, 2017, https://doi.org/10.1016/j.esd.2017.05.005.
  • [7] K. Křŭmal, P. Mikuška, J. Horák, F. Hopan, and K. Krpec, “Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe”, Chemosphere, vol. 229, pp. 51-59, 2019, DOI: 10.1016/j.chemosphere.2019.04.137.
  • [8] M. Czaplicka, J. Klyta, B. Komosiński, T. Konieczny, and K. Janoszka, “Comparison of Carbonaceous Compounds Emission from the Co-Combustion of Coal and Waste in Boilers Used in Residential Heating in Poland, Central Europe”, Energies, vol. 14, no. 17, p. 5326, 2021, https://doi.org/10.3390/en14175326.
  • [9] B. Karbowska, J. Idkowiak, and B. Wyrwas, “Badanie wpływu wilgoci higroskopijnej i przemijającej na wartość opałową węgla pochodzącego z kopalń należących do Górnośląskiego Zagłębia Węglowego”, Przemysł Chemiczny, vol. 97, no. 2, pp. 59-62, 2018, DOI: 10.15199/62.2018.2.4.
  • [10] Standard PN-EN 303-5:2021. Heating boilers.
  • [11] Commission Regulation (EU) 2015/1185 of 24 April 2015 Implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Solid Fuel Local Space Heaters (Official Journal of the European Union); Publications Office of the European Union: Luxembourg, 2015.
  • [12] P. Papadatos, C.S. Psomopoulos, and G.C. Ioannidis, “Industrial furnaces/burners. A review on the environmental legislation focusing on ecodesign”, Fresenius Environmental Bulletin, vol. 26, no. 9, pp. 5666- 5673, 2017.
  • [13] A. Manowska, K. T. Osadnik, and M. Wyganowska, “Economic and social aspects of restructuring Polish coal mining: Focusing on Poland and the EU”, Resources Policy, vol. 52, pp. 192-200, 2017, DOI: 10.1016/j.resourpol.2017.02.006.
  • [14] T. Dziok and K. Penkała, “The possibility of reducing emissions from households by using coal briquettes”, Polityka Energetyczna-Energy Policy Journal, vol 23, no. 3, pp. 55–70, 2020, DOI: https://doi.org/10.33223/epj/126438.
  • [15] S. Stelmach, A. Sobolewski and K. Ignasiak, “Ecological coal based fuels” Systemy Wspomagania w Inżynierii Produkcji, vol. 9, no. 2, pp. 37-47. 2020.
  • [16] N. Maciejończyk, G. Pełka, W. Luboń, and D. Malik, “Analysis of the flue gas produced during the coal and biomass co-combustion in a solid fuel boiler”, in Renewable Energy Sources: Engineering, Technology, Innovation, Springer, 2020, pp. 239-246, DOI:10.1007/978-3-030-13888-2_23.
  • [17] R. Junga, M. Wzorek, and M. Kaszubska, “Technical and environmental performance of 10 kW understocker boiler during combustion of biomass and conventional fuels”, in E3S Web of Conferences, 2017, vol. 19, p. 01009, https://doi.org/10.1051/e3sconf/20171901009.
  • [18] P. Kaszyński and J. Kamiński, “Coal demand and environmental regulations: A case study of the Polish power sector”, Energies, vol. 13, no. 6, p. 1521, 2020, https://doi.org/10.3390/en13061521.
  • [19] T. Dzik, M. Hryniewicz, and P. Wdaniec, “Pressure agglomeration of solid composite fuel”, Przemysl Chemiczny, vol. 96, no. 9, pp. 1856-1859, 2017, DOI: 10.15199/62.2017.9.6.
  • [20] R. Chavda and P. Mahanwar, “Effect of inorganic and organic additives on coal combustion: a review”, International Journal of Coal Preparation and Utilization, vol. 41, no. 10, pp. 749-766, 2021, https://doi.org/10.1080/19392699.2018.1536046.
  • [21] M. Bembenek, „Research and prospects for new areas of using roller presses”, Przemysł Chemiczny, vol. 96, no. 9, pp. 1845-1847, 2017, DOI: 10.15199/62.2017.9.3.
  • [22] M. Bembenek, T. Dzik, J. Smyła, and P. Wojtas, “Research on the possibility of producing an environmentally friendly qualified composite fuel for the transitional period in the household and communal sector in Poland”, Przemysł Chemiczny, vol. 101, no. 3, pp. 191-196, 2022, DOI: 10.15199/62.2022.3.3.
  • [23] Z. Drzymała, “Industrial Briquetting – Fundamentals and Methods”, Elsevier Science Publishers, 1993.
  • [24] M. Hryniewicz, M. Bembenek, A. Janewicz, and B. Kosturkiewicz, “Agglomeration of fine-grained materials in roll presses with asymmetrical compaction unit”, Przemysł Chemiczny, vol. 94, no. 12, pp. 2223-2226, 2015, DOI: 10.15199/62.2015.12.27.
  • [25] K. Baiul, S. Vashchenko, A. Khudyakov, P. Krot, and N. Solodka, “Optimization of wastes compaction parameters in case of gradual wear of the briquetting press rolls”, Structural Integrity, Cham: Springer International Publishing, 2022, pp. 293-302 https://doi.org/10.1007/978-3-030-91847-7_27
  • [26] M. Hryniewicz, “Metoda doboru pras walcowych oraz opracowania założeń do ich modernizacji lub konstrukcji”, Kraków, Wydawnictwa AGH, 1997.
  • [27] B. Kosturkiewicz, A. Janewicz, A. Magdziarz, M. Hryniewicz, M. Bembenek, and P. Gara, “Zagadnienie brykietowania węgla kamiennego koksowego”, Rynek Energii, no. 2, pp. 104-109, 2014.
  • [28] A. Balraj, J. Krishnan, K. Selvarajan, and K. Sukumar, “Potential use of biomass and coal-fine waste for making briquette for sustainable energy and environment”, Environmental Science and Pollution Research, vol. 28, no. 45, pp. 63516-63522, 2021. https://doi.org/10.1007/s11356-020-10312-2
  • [29] A.A. Adeleke, J.K. Odusote, O.A. Lasode, P.P. Ikubanni, M. Malathi, and D. Paswan, “Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders”, Heliyon, vol. 5, no. 7, p. e02160, 2019. https://doi.org/10.1016/j.heliyon.2019.e02160
  • [30] S. Obidzinski, “The evaluation of the power consumption of the pellets production process from the plant materials”, Teka Komisji Motoryzacji i Energetyki Rolnictwa, vol. 13, no. 2, pp. 73-78, 2013.
  • [31] A.T. Mursito, D.N. Arifin, and Others, “Characterization of bio-coal briquettes blended from low quality coal and biomass waste treated by Garant® bio-activator and its application for fuel combustion”, International Journal of Coal Science & Technology, vol. 7, no. 4, pp. 796-806, 2020, https://doi.org/10.1007/s40789-020-00309-0.
  • [32] A. Özyuğuran, H.H. Acma, and E. Dahiloğlu, “Production of fuel briquettes from rice husk--lignite blends”, Environmental Progress & Sustainable Energy, vol. 36, no. 3, pp. 742–748, 2017, https://doi.org/10.1002/ep.12429.
  • [33] A.A. Adeleke, J.K. Odusote, P.P. Ikubanni, O.O. Agboola, A.O. Balogun, O.A. Lasode, “Tumbling strength and reactivity characteristics of hybrid fuel briquette of coal and biomass wastes blends”, Alexandria Engineering Journal, vol. 60, no. 5, pp. 4619-4625, 2021.https://doi.org/10.1016/j.aej.2021.03.069
  • [34] A. Balraj, J. Krishnan, K. Selvarajan, and K. Sukumar, “Potential use of biomass and coal-fine waste for making briquette for sustainable energy and environment”, Environmental Science and Pollution Research, vol. 28, no. 45, pp. 63516-63522, 2021, https://doi.org/10.1007/s11356-020-10312-2.
  • [35] S.Y. Kpalo, M.F. Zainuddin, L.A. Manaf, and A.M. Roslan, “A review of technical and economic aspects of biomass briquetting”, Sustainability, vol. 12, no. 11, p. 4609, 2020.https://doi.org/10.3390/su12114609.
  • [36] O.F. Obi, R. Pecenka, and M.J. Clifford, “A Review of Biomass Briquette Binders and Quality Parameters”, Energies, vol. 15, no. 7, p. 2426, 2022. https://doi.org/10.3390/en15072426.
  • [37] A. Janewicz, B. Kosturkiewicz, “Otrzymywanie brykietów paliwa kompozytowego z węgla brunatnego i biomasy”, Przemysł Chemiczny, vol. 94, no. 9, pp. 1521-1523, 2015.
  • [38] G. Borowski, W. Stępniewski, and K. Wójcik-Oliveira, “Effect of starch binder on charcoal briquette properties”, International Agrophysics, vol. 31, no. 4, p. 571, 2017.
  • [39] B. Kosturkiewicz, A. Janewicz, M. Hryniewicz, and A. Rozwadowski, “Zagadnienie zagospodarowania pylistego węgla drzewnego”, Rynek Energii, no. 6, pp. 99-105, 2015.
  • [40] G. Borowski and J.J. Hycnar, “Utilization of fine coal waste as a fuel briquettes”, International Journal of Coal Preparation and Utilization, vol. 33, no. 4, pp. 194-204, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5123c435-6c45-467f-91ac-19105957a8bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.