PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of process-material conditions on the structure and biological properties of electrospun polyvinylidene fluoride fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polyvinylidene fluoride (PVDF) is one of the most important piezoelectric polymers. Piezoelectricity in PVDF appears in polar b and ɣ phases. Piezoelectric fibers obtained by means of electrospinning may be used in tissue engineering (TE) as a smart analogue of the natural extracellular matrix (ECM). We present results showing the effect of rotational speed of the collecting drum on morphology, phase content and in vitro biological properties of PVDF nonwovens. Morphology and phase composition were analyzed using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), respectively. It was shown that increasing rotational speed of the collector leads to an increase in fiber orientation, reduction in fiber diameter and considerable increase of polar phase content, both b and g. In vitro cell culture experiments, carried out with the use of ultrasounds in order to generate electrical potential via piezoelectricity, indicate a positive effect of polar phases on fibroblasts. Our preliminary results demonstrate that piezoelectric PVDF scaffolds are promising materials for tissue engineering applications, particularly for neural tissue regeneration, where the electric potential is crucial.
Rocznik
Strony
627--633
Opis fizyczny
Bibliogr. 44 tab., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5B, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Department of Ultrasound, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • [1] T.E. Douglas, J. Schietse, A. Zima, S. Gorodzha, B.V. Parakhonskiy, D. Khalenkow, R. Shkarin, A. Ivanova, T. Baumbach, V. Weinhardt, Ch. Stevens, V. Vanhoorne, Ch. Vervaet, L. Balcaen, F. Vanhaecke, A. Slośarczyk, M. Surmaneva, R. Surmenev, and A. Skirtach, “Novel self-gelling injectable hydrogel/alpha-tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization”, J. Biomed. Mater. Res. A, 106(3), 822–828 (2018).
  • [2] B. Niemczyk, P. Sajkiewicz, and D. Kolbuk,”Injectable hydrogels as novel materials for central nervous system regeneration”, J. Neural Eng. 15, 15 (2018).
  • [3] W. Matysiak, T. Tański, and M. Zaborowska, “Manufacturing process and characterization of electrospun PVP/ZnO NPs nano-fibers”, Bull. Pol. Ac.: Tech. 67(2), 193‒200 (2019).
  • [4] B. Ostrowska, J. Jaroszewicz, E. Zaczynska, W. Tomaszewski, W. Swieszkowski, and K. Kurzydłowski, “Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering”, Bull. Pol. Ac.: Tech. 62(3), 551‒556 (2014).
  • [5] A. Ulatowska-Jarża, J. Pucińska, K. Wysocka-Król, I. Hołowacz, and H. Podbielska, “Nanotechnology for biomedical applications – enhancement of photodynamic activity by nanomaterials”, Bull. Pol. Ac.: Tech. 59(3), 253‒261 (2011).
  • [6] P. Sajkiewicz, “Crystallization behaviour of poly (vinylidene fluoride)”, Eur. Polym. J. 35, 1581–1590 (1999).
  • [7] A. Gradys, P. Sajkiewicz, S. Adamovsky, A.A. Minakov, and C. Schick, “Crystallization of poly (vinylidene fluoride) during ultra-fast cooling”, Thermochimica Acta 461, 153‒157 (2007).
  • [8] A. Zaszczynska, P. Sajkiewicz, and A. Gradys, “Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering”, Polymers, 12(1), 161 (2020).
  • [9] Z.M. Dang, Y.H. Lin, and C.W. Nan, “Novel ferroelectric polymer composites with high dielectric constants”. Adv Mater 15, 1625–1629 (2003).
  • [10] S. Yoon, A. Prabu, and K. Park, “Metal salt-induced ferroelectric crystalline phase in poly (vinylidene fluoride) films”, Macromol Rapid Commun 29, 1316–1321 (2008).
  • [11] L. Yu and P. Cebe, “Crystal polymorphism in electrospun composite nanofibers of poly (vinylidene fluoride) with nanoclay”, Polymer, 50, 2133–2141 (2009).
  • [12] T. Lei and L. Yu, Experiments and modelling of electrospinning process G. Zheng, “Electrospinning-induced preferred dipole orientation in PVDF fibers”, J Mater Sci 50, 4342 (2015).
  • [13] T. Kowalewski and S. Błoński, Experiments and modelling of electrospinning process S. Baaral, „Experiments and modelling of electrospinning process”, Bull. Pol. Ac.: Tech. 53(4), 385‒394 (2005).
  • [14] A.J. Lovinger, “Annealing of poly (vinylidene fluoride) and formation of a fifth phase”, Macromolecules 15, 40–44 (1982).
  • [15] R. Gregorio and M. Cestari, “Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride”, J. Polym. Sci. Part B Polym. Phys. 32, 859–870 (1944).
  • [16] B. Bera and M. Sarkar, “Piezoelectricity in PVDF and PVDF Based Piezoelectric Nanogenerator: A Concept”, J Appl Phys 9, 95‒99 (2017).
  • [17] P. Sajkiewicz, A. Wasiak, and Z. Gocłowski, “Phase transitions during stretching of poly (vinylidene fluoride)”, European Polym. J. 35(3), 423‒429 (1999).
  • [18] K. Matsushige, K. Nagata, S. Imada, and T. Takemura, “The II-I crystal transformation of poly (vinylidene fluoride) under tensile and compressional stresses”, Polymer 21, 1391‒1397 (1980).
  • [19] J. Scheinbeim, C. Nakafuku, B.A. Newman, and K. Pae, “High-pressure crystallization of poly (vinylidene fluoride)”, J. Appl. Phys., 50(6), 4399 – 4405 (1979).
  • [20] J. Wang, H. Li, J. Liu, Y. Duan, S. Jiang, and S. Yan, “On the α → β Transition of Carbon-Coated Highly Oriented PVDF Ultrathin Film Induced by Melt Recrystallization” J Am Chem Soc. 125(6), 1496‒1497 (2003).
  • [21] Y. Ting, H. Gunawan, A. Sugondo, and Ch. Chiu, “A New Approach of Polyvinylidene Fluoride (PVDF) Poling Method for Higher Electric Response”, Ferroelectrics 446, 28‒38 (2013).
  • [22] S. Liang, Y. Kang, A. Tiraferri, E. Giannelis, H. Xia, and E. Menachem, “Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles”, ACS Appl Mater 5(14), 6694‒6703 (2013).
  • [23] D. Mandala, K. Henkelb, and D. Schmeißerb, “The electroactive β-phase formation in Poly (vinylidene fluoride) by gold nanoparticles doping”, Mater Lett 73, 123‒125 (2012).
  • [24] T.K. Sinha, S. Ghosh, R. Maiti, S. Jana, B. Adhikari, D. Mandal, and S.K. Ray, “Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor”, ACS Appl. Mater. Interfaces 8(24), 14986–14993 (2016).
  • [25] A. Issa, M. Al-Maadeed, A. Luyt, D. Ponnamma, and M. Hassan, “Physico-Mechanical, Dielectric, and Piezoelectric Properties of PVDF Electrospun Mats Containing Silver Nanoparticles”, C—Journal of Carbon Research 3(4), 30 (2017).
  • [26] F.A. He, K. Lin, D.L. Shi, H.L. Wu, H.K. Huang, J. Chen, F. Chen, and K.H. Lam, “Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching”, Compos Sci Technol 137(12), 138‒147 (2016).
  • [27] L. Jian-Hua, S. Xi-Sheng, Z. Qing, L. Mi-Zi, and Z. Qi-Qing, “The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance”, Appl Surf Sci. 265, 663‒670 (2013).
  • [28] J. Sakata and M. Mochizuki, “Preparation of organic thin films by an electrospray technique I. Crystal forms and their orientation in poly (vinylidene flouride) films”, Thin Solid Films 195, 175–184 (1991).
  • [29] S. Damaraju, S. Wu, M. Jaffe, and T. Arinzeh, “Structural changes in PVDF fibers due to electrospinning and its effect on biological function”, Biomed. Mater. 8, 045007 (2013).
  • [30] C. Ribeiro, J. Pärssinen, V. Sencadas, V. Correia, S. Miettinen, V. Hytönen, and S. Lanceros‐Méndez, “Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells”, J. Biomed. Mater. Res. 103, 2172‒2175 (2014).
  • [31] M.T. Rodrigues, M.E. Gomes, J.F. Mano, and R.L. Reis, „β-PVDF Membranes Induce Cellular Proliferation and Differentiation in Static and Dynamic Conditions”, Materials Science Forum 587‒588, 72‒76 (2008).
  • [32] M. Hoop, X.Z. Chen, A. Ferrari, F. Mushtaq, G. Ghazaryan, T. Tervoort, D. Poulikakos, B. Nelson, and S. Pané, “Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes”, Scientific Reports 7, 4028 (2017).
  • [33] L. Ghasemi‐Mobarakeh, M.P. Prabhakaran, M. Morshed, M. Hossein, N.E. Hossein, B.S. Kiani, S. Al‐Deyab, and S. Ramakrishna,”Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering”, J Tissue Eng Regen M (2017).
  • [34] A.G. Kolbeck, „Aging of piezoelectricity in poly (vinylidene fluoride)”, J Polym Sci Pol Phys. 20, 1987‒2001 (1982).
  • [35] S.B. Rodan, Y. Imai, M.A. Thiede, G. Wesolowski, D. Thompson, Z. Bar-Shavit, S. Shull, K. Mann, and G.A. Rodan, “Characterization of a Human Osteosarcoma Cell Line (Saos-2) with Osteoblastic Properties”, Cancer Res. 47, 4961–4966 (1987).
  • [36] D. Klee, Z. Ademovic, A. Bosserhoff, H. Hoecker, G. Maziolis, and H.J. Erli, “Surface modification of poly (vinylidenefluoride) to improve the osteoblast adhesio”, Biomaterials 24, 3663–3670 (2003).
  • [37] W.A. Yeea, M. Kotaki, Y. Liu, and X. Lu, “Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers”, Polymer 48(2), 512‒521 (2007).
  • [38] Y. Li, Ch. Liao, and S.Ch. Tjong, “Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering”, Nanomaterials (Basel) 9(7), 952 (2019).
  • [39] X. Cai, T. Lei, D. Sund, and L. Linde, “A critical analysis of the a, b and g phases in poly (vinylidene fluoride) using FTIR”, RSC Adv. 7, 15382‒15389 (2017).
  • [40] K. Chwee and T. Limbc, “Nanofiber technology: current status and emerging developments”, Prog Polym Sci. 70, 1‒17 (2017).
  • [41] Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymernanofibers by electrospinning and their applications in nanocomposites”, Compos. Sci. Technol. 63(15), 2223–2253 (2003).
  • [42] E. Zussman, A. Theron, and A. Yarin, “Formation of nanofiber crossbars in electrospinning”, Appl. Phys. Lett. 82(6), 973–975 (2003).
  • [43] H. Pan, L. Li, L. Hu, and X. Cui, “Continuous aligned polymer fibers produced by a modified electrospinning method”, Polymer 47(14), 4901–4904 (2006).
  • [44] B. Sundaray, V. Subramanian, T. Natarajan, R.Z. Xiang, C.C. Chang, and W.S. Fann, “Electrospinning of continuous aligned polymer fibers”, Appl. Phys. Lett. 84(7), 1222–1224 (2004).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5121678c-9c08-4f1f-a7e4-466eb90d564f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.